Class Schedules

Spring 2017 »      Fall 2016 »     

Spring 2017 Class Schedule - updated May 4, 2016 at 05:00 pm

Number/Section  Title
Days Time Room Instructor
 
PHYS 130-01  Science of Renewable Energy
MWF 01:10 pm-02:10 pm James Doyle
*Cross-listed with ENVI 130-01*

PHYS 194-01  Pilot: Gen Ed Course
MWF 02:20 pm-03:20 pm Tonnis ter Veldhuis
 
PHYS 194-02  Modern Astronomy II
MWF 12:00 pm-01:00 pm John Cannon
*Does not count for math/natural science general distribution*

PHYS 227-01  Principles of Physics II
MWF 10:50 am-11:50 am STAFF
 
PHYS 227-L1  Principles of Physics II Lab
T 09:10 am-11:10 am Brian Adams
 
PHYS 227-L2  Principles of Physics II Lab
T 01:20 pm-03:20 pm Brian Adams
 
PHYS 227-L3  Principles of Physics II Lab
R 09:10 am-11:10 am Brian Adams
 
PHYS 348-01  Laboratory Instrumentation
MWF 08:30 am-09:30 am James Doyle
 
PHYS 348-L1  Laboratory Instrumentation Lab
T 08:00 am-11:10 am James Doyle
 
PHYS 348-L2  Laboratory Instrumentation Lab
T 01:20 pm-04:30 pm James Doyle
 
PHYS 444-01  Electromagnetic Radiation
MWF 10:50 am-11:50 am James Heyman
 
PHYS 444-L1  Electromagnetic Radiation Lab
F 03:30 pm-04:30 pm James Heyman
 
PHYS 460-01  Astrophysics
MWF 01:10 pm-02:10 pm John Cannon
 
PHYS 461-01  Mechanics
MWF 09:40 am-10:40 am Tonnis ter Veldhuis
 
PHYS 461-L1  Mechanics Lab
M 03:30 pm-04:30 pm James Heyman
 
PHYS 468-01  Statistical Mechanics
MWF 02:20 pm-03:20 pm STAFF
 
PHYS 489-01  Physics Seminar
W 03:30 pm-04:30 pm John Cannon
*1 credit course*

top of page »

Fall 2016 Class Schedule - updated May 4, 2016 at 05:00 pm

Number/Section  Title
Days Time Room Instructor
 
PHYS 111-01  Contemporary Concepts
MWF 02:20 pm-03:20 pm OLRI 150 Sung Kyu Kim
 
PHYS 113-01  Modern Astronomy
MWF 12:00 pm-01:00 pm OLRI 150 John Cannon
 
PHYS 120-01  Astronomical Techniques
M 07:00 pm-10:00 pm OLRI 404 John Cannon
*2 credit course*

PHYS 194-01  Biomechanics
MWF 12:00 pm-01:00 pm OLRI 404 James Doyle
*First Year Course only*

PHYS 194-L1  Biomechanics Lab
T 09:10 am-11:10 am OLRI 154 James Doyle
*First Year Lab only*

PHYS 226-01  Principles of Physics I
MWF 08:30 am-09:30 am OLRI 150 STAFF
 
PHYS 226-02  Principles of Physics I
MWF 09:40 am-10:40 am OLRI 150 STAFF
 
PHYS 226-L1  Principles of Physics I Lab
M 02:20 pm-04:20 pm OLRI 152 Brian Adams
 
PHYS 226-L2  Principles of Physics I Lab
M 07:00 pm-09:00 pm OLRI 152 Brian Adams
 
PHYS 226-L3  Principles of Physics I Lab
T 09:10 am-11:10 am OLRI 152 Brian Adams
 
PHYS 226-L4  Principles of Physics I Lab
T 01:20 pm-03:20 pm OLRI 152 Brian Adams
 
PHYS 227-01  Principles of Physics II
MWF 10:50 am-11:50 am OLRI 150 James Doyle
 
PHYS 227-L1  Principles of Physics II Lab
R 09:10 am-11:10 am OLRI 152 Brian Adams
 
PHYS 227-L2  Principles of Physics II Lab
R 01:20 pm-03:20 pm OLRI 152 Brian Adams
 
PHYS 331-01  Modern Physics
MWF 08:30 am-09:30 am OLRI 101 James Heyman
 
PHYS 331-L1  Modern Physics Lab
R 08:00 am-11:10 am OLRI 154 James Heyman
 
PHYS 331-L2  Modern Physics Lab
R 01:20 pm-04:30 pm OLRI 154 James Heyman
 
PHYS 443-01  Electromagnetic Theory
MWF 10:50 am-11:50 am OLRI 101 STAFF
 
PHYS 443-L1  Electromagnetic Theory Lab
M 03:30 pm-04:30 pm OLRI 143 James Heyman
 
PHYS 481-01  Quantum Mechanics
MWF 09:40 am-10:40 am OLRI 170 Tonnis ter Veldhuis
 
PHYS 481-L1  Quantum Mechanics Lab
F 03:30 pm-04:30 pm OLRI 143 James Heyman
 
PHYS 494-01  Introduction to Einstein's Theory of General Relativity
MWF 02:20 pm-03:20 pm OLRI 170 Tonnis ter Veldhuis
Einstein’s theory of general relativity speaks to the imagination of many. This famous theory resolves in a beautiful way the dilemmas that arise at the cross-section of special relativity and Newton’s theory of gravity. Some of its more exotic consequences, such as the existence of black holes, are a staple of science fiction literature. However, general relativity is now a well-established physical theory, supported by a large number of measurements, including the recent observation of gravitational waves emitted in a black hole merger event.

This course will give a quantitative introduction to general relativity. We will start the course by reviewing Newton’s theory of gravity and special relativity. We will then explore what goes wrong at the interface where these two theories meet. General relativity provides a consistent resolution of these problems that requires a bold new perspective; gravity is no longer understood in terms of forces that massive objects exert on each other. Instead, the presence of matter is seen to curve space-time, and in turn objects follow geodesic trajectories in this curved space-time. In mathematical terms, general relativity is therefore most naturally cast in the form of geometry.

We will then discuss some of the more symmetric types of curved space-times, in particular those that are described by the spherically symmetric Schwarzschild metric and the isotropic and homogeneous Robertson-Walker metric. A firm understanding of these specific cases will allow us to explore a large number of interesting applications, such as precision tests of general relativity within the Solar system, for example the perihelion shift of Mercury, and more exotic topics such as black holes, gravitational lensing, and cosmology, the evolution of the Universe as a whole.

PHYS 494-02  Astrophysics I
MWF 08:30 am-09:30 am OLRI 404 John Cannon
 

top of page »