Preview Sheet for Test 2
Internal Energy, Chemical Bonding, and Entropy
Friday, March 3, starting at 8:00 a.m.

- Lectures from 2/10 to 2/27
 - Internal Energy Concepts, Heat and Work Calculations: 30 points
 - Chemical Bonding Concepts and Calculations: 20 points
 - Entropy Concepts and Calculations: 50 points
- Problem Sets 3 and 4 (see course web page for answer keys)
- Reading
 - Chapter 4: pp. 4-4 to 4-7; 4-12 to 4-13; Introduction to Experiment 4 (Calorimetry)
 - Chapter 5: pp. 5-1 to 5-9; 5-14
 - Chapter 6: Nothing!
 - Chapter 7: pp. 7-1 to 7-4 (but not $\Delta S_{\text{sys}} = q_{\text{sys}} / T$); 7-9 to 7-11; 7-15 to 7-16
 - Chapter 8: pp. 8-1 to 8-6; 8-8 to 8-15

Studying strategies:

- Focus on your lecture notes and homework. Use your textbook only as a reference.
- This test will consist entirely of short answer, essay, and mathematical questions. The implication of this test format is that you should focus on the “big ideas” and concepts from lecture and homework, not the details.
- Make sure you understand the significance and use of the reference information that will be given to you in the back of the test booklet (see below).
- Do extra problems at the ends of the chapters. If you would like to look up an answer for a problem, please see the answer keys on the bulletin board next to Prof. Fischer’s office.
- It is also important to understand concepts from lecture not covered explicitly in the homework problems. These may be covered by short-answer or essay questions.
- If a topic was not covered in homework or in lecture, you are not responsible for it! Please ask me if you cannot figure out if a particular topic is “fair game” for the test.

Student Tutoring Schedule (in Olin-Rice 341)
Monday - Thursday: 7:00 – 10:00 p.m.

Extra Office Hours
Thursday: 7:00 – 9:00 p.m.

[Instructions from the test booklet:]
1. Your exam booklet should have eight pages total, with questions on Pages 2-5, and a periodic table and other reference data on Pages 6-8. Check to see you have eight pages now. If you do not, ask for another copy of the exam.
2. You may remove the last three pages.
3. Write your name in the space above and on the backs of Pages 2-5.
4. This exam is closed-everything.
5. You may use programmable calculators, but chemical data should not be stored in them.
6. You have up to **90 minutes** to work on this exam, if you start work at 8:00 a.m.

What not to memorize (they will be provided):
(1) A periodic table
(2) Tables of bond dissociation energies and standard molar entropies
(3) The information below:

\[
E_{\text{vib}} = \left(i + \frac{1}{2} \right) \hbar \nu \quad \text{where} \quad \nu = \frac{1}{2\pi} \sqrt{\frac{k_f}{\mu}} \quad \text{and} \quad i = 0,1,2,\ldots
\]

\[
E_{\text{rot}} = i(i+1) \frac{\hbar^2}{8\pi^2} \left(\frac{1}{\mu R^2} \right) \quad \text{where} \quad i = 0,1,2,\ldots
\]

\[
E_{\text{trans}} = \left(n_x^2 + n_y^2 + n_z^2 \right) \frac{\hbar^2}{8} \left(\frac{1}{m V^{2/3}} \right) \quad \text{where} \quad n = 1,2,3,\ldots
\]

\[
\mu = \frac{m_1m_2}{m_1 + m_2} \quad \quad W = \frac{n!}{n_0!n_1!n_2!}\ldots
\]

\[
\frac{n_j}{n_i} = e^{-\frac{E_{i} - E_{j}}{kT}} = e^{-\frac{\Delta E}{kT}} \quad \quad \Delta U = \Delta U_C + \Delta U_T = q + w \quad \Delta U_T = C\Delta T
\]

\[
w = -P\Delta V \quad PV = nRT \quad P\Delta V = nR\Delta T \quad T \text{(K)} = T \text{(°C)} + 273.15 \text{ K}
\]

\[
S = k \ln W \quad \Delta S = nR \ln \frac{V_2}{V_1} \quad \Delta S = -nR \ln \frac{P_2}{P_1} \quad \Delta S = -nR \ln \frac{[X]_2}{[X]_1}
\]

\[
S_x = S_x^o - R \ln P_x / \text{bar} \quad S_x = S_x^o - R \ln[X]/M \quad \Delta_S = \Delta_S^o - R \ln Q
\]

\[
\hbar = 6.626 \times 10^{-34} \text{ J s} \quad k = 1.381 \times 10^{-23} \text{ J K}^{-1}
\]

\[
R = 0.08315 \text{ L bar mol}^{-1} \text{ K}^{-1} = 8.315 \text{ J mol}^{-1} \text{ K}^{-1} \quad 1 \text{ L bar} = 100 \text{ J}
\]

\[
N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \quad 1 \text{ amu} = 1.661 \times 10^{-27} \text{ kg}
\]

\[
1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2} \quad 1 \text{ kJ} = 10^3 \text{ J} \quad 1 \text{ m} = 10^9 \text{ nm} = 10^{10} \text{ Å}
\]

Test-Taking Tips

- Pace yourself. Try to make your effort on a given problem proportional to the number of points that it is worth.
- Read the problems carefully.
- If you can’t figure out how to begin a problem after thinking about it for a couple of minutes, go on to the next problem.
- Please ask me if a question doesn’t make sense.