Math 377, Handout 3:
Problems due September 29

1. Let \(f(x) = x^2 \sin(1/x), \) \(F(x) = x. \) Each of these functions approaches 0 as \(x \) approaches 0, but if we try to apply l'Hospital's rule we get that the limit as \(x \) approaches 0 of \(f'(x)/F'(x) \) is undefined, while it is clear that
\[
\lim_{x \to 0} \frac{x^2 \sin(1/x)}{x} = \lim_{x \to 0} x \sin(1/x) = 0.
\]
What is wrong with this example?

2. Prove that if \(f \) is continuous on a closed interval \([a, b]\), differentiable on the open interval \((a, b)\), and if \(f(a) = f(b) = 0 \), then for any real number \(\alpha \) there is an \(x \in (a, b) \) such that
\[
\alpha f(x) + f'(x) = 0.
\]
Hint: Apply the Mean Value Theorem to the function \(g(x) = e^{\alpha x} f(x) \).

3. Let \(P(x) \) be any polynomial of degree at least two, all of whose roots are real. Prove that all of the roots of \(P'(x) \) must be real. Hint: Let \(r_1 \leq r_2 \leq \ldots \leq r_n \) be the roots of \(P(x) \). Note that some of these roots may be equal (if the polynomial has any roots of multiplicity > 1). How many roots does \(P'(x) \) have (counting multiple roots)? Show that if \(r_i < r_{i+1} \), then \(P' \) has a real root between \(r_i \) and \(r_{i+1} \). Show that if \(P \) has a multiple root of multiplicity \(t \geq 2 \) at \(x = a \), then \(P' \) must have a root at \(x = a \). What is the multiplicity of the root of \(P' \) at \(x = a \)? Now use a counting argument to show that all the roots of \(P' \) must be real.

4. Prove that if \(f \) is continuous on \([a, b]\), then \(|f|\) is continuous on \([a, b]\). Show by an example that the converse is not true.