ROBINSON-SCHENsted-KNUTH INSERTION AND CHARACTERS OF CYCLOTOMIC HECKE ALGEBRAS

ANDY CANTRELL, TOM HALVERSON, AND BRIAN MILLER

0. Introduction

The cyclotomic Hecke algebras $H_{n,r} = H_n(u_1, \ldots, u_r; q)$ were defined by Ariki and Koike in [AK] as Iwahori-Hecke algebras of the complex reflection group $G_{n,r} = S_n \wr (\mathbb{Z}/r\mathbb{Z})^n$ where S_n is the symmetric group. If ζ is a primitive complex rth root of unity, then when $q \to 1$ and $u_i \to \zeta^i$, the algebra $H_{n,r}$ specializes to the group algebra $\mathbb{C}[G_{n,r}]$. The irreducible representations of $H_{n,r}$ are constructed in [AK]. They are indexed by the set of all r-tuples of partitions with a total of n boxes, called r-partitions.

For each r-partition μ, T. Shoji [Sho] defines a symmetric function q_μ and proves that

$$q_\mu = \sum_{\lambda} \chi^\lambda_q(a_\mu) s_\lambda,$$

where s_λ is the Schur function associated to the r-partition λ and $\chi^\lambda_q(a_\mu)$ is the irreducible $H_{n,r}$-character associated to λ and evaluated at an element a_μ. The function q_μ is a deformation of the power sum symmetric function, and Shoji’s formula is analogous to the Frobenius formula for symmetric group characters. Shoji proves it using the Schur-Weyl duality for $H_{n,r}$ found in [SS].

In this paper we derive the formula

$$q_\mu = \sum_{\lambda \in P_{n,r}} \left(\sum_{Q_\lambda} wt_\mu(Q_\lambda) \right) s_\lambda,$$

where Q_λ ranges over the set of “standard tableaux” of shape λ, and where wt_μ is a weight on standard tableaux that depends on the parameters q and u_i and that is computed combinatorially. By comparing coefficients of s_λ in these two formulas we obtain the expression

$$\chi^\lambda_q(a_\mu) = \sum_{Q_\lambda} wt_\mu(Q_\lambda)$$

which computes the irreducible $H_{n,r}$-characters as a sum over standard tableaux. When $q = 1$ and $u_i = \zeta^i$, our character formula specializes to a character formula for the complex reflection group $G_{n,r}$.

In the special case where $n = r = 1$, the cyclotomic Hecke algebra $H_{1,1}$ is the Iwahori-Hecke algebra $H_n(q)$ of type A_{n-1} associated with the symmetric group S_n. Shoji’s Frobenius formula specializes, in this case, to the Frobenius formula

Research supported in part by National Science Foundation grant DMS-0100975.
of A. Ram [Ra1] for \(H_n(q) \) and our character formula is a generalization of the Roichman formula [Ro] for irreducible characters of \(H_n(q) \) and \(S_n \).

Our method is to follow the work of Ram [Ra2] who gives a new proof of the Roichman formula for \(H_n(q) \) using Robinson-Schensted-Knuth insertion. We write the function \(q_\mu \) as a sum over \(\mu \)-weighted integer sequences. We then use RSK insertion, modified for \(r \)-partitions, to turn this into a sum over pairs \((P, Q)\) where \(P \) is a column-strict tableau, \(Q \) is a standard tableau, and \(P \) and \(Q \) have the same shape \(\lambda \) for some \(r \)-partition \(\lambda \). As a special case of our insertion rule we obtain a bijective proof of the formula

\[
n!r^n = \sum_\lambda f_\lambda^2
\]

where \(n!r^n = |G_{n,r}| \) and \(f_\lambda \) is the number of standard tableau whose shape is the \(r \)-partition \(\lambda \). This fact can be proved algebraically by decomposing the regular representation of \(G_{n,r} \) into irreducibles and comparing dimensions.

A Murnaghan-Nakayama type rule for the characters of \(H_n,q \) is found in [HR]. It gives the irreducible characters of \(H_n,q \) as weighted sums over broken-border-strip tableaux. The characters \(\chi_\lambda^\mu(q_\mu) \) found in Shoji’s Frobenius formula and in this paper are evaluated on a set \(\{a_\mu\} \) of elements in \(H_{n,r} \) for which characters are completely determined. The character values found in [HR] are evaluated on different elements \(T_\mu \).

1. Cyclotomic Hecke Algebras

Let \(u_1, \ldots, u_r \) and \(q \) be indeterminates. The cyclotomic Hecke algebra \(H_{n,r} = H_n(u_1, \ldots, u_r; q) \) is the algebra over \(\mathbb{C}(q, u_1, \ldots, u_r) \) defined by generators \(X_1, T_1, \ldots, T_{n-1} \), and relations

\[
\begin{align*}
(1) \quad & T_i^q = (q - q^{-1})T_i + 1, & 1 \leq i \leq n - 1, \\
(2) \quad & T_iT_j = T_jT_i, & |i - j| > 1, \\
(3) \quad & T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}, & 1 \leq i \leq n - 2, \\
(4) \quad & X_1T_1X_1T_1 = T_1X_1T_1X_1, \\
(5) \quad & (X_1 - u_1)(X_1 - u_2) \cdots (X_1 - u_r) = 0.
\end{align*}
\]

These algebras were introduced by Ariki and Koike [AK], and they are semisimple over \(\mathbb{C}(q, u_1, \ldots, u_r) \).

Let \(S_n \) be the symmetric group on \(n \) letters, and let \(G_{n,r} = S_n \wr (\mathbb{Z}/r\mathbb{Z})^n \). The group \(G_{n,r} \) has a presentation on generators \(t_1, s_1, \ldots, s_{n-1} \) where \(t_1^r = 1 \) and \(s_1, \ldots, s_{n-1} \) are the simple transpositions in \(S_n \). If we let

\[
q \to 1, \quad u_i \to \zeta^i (1 \leq i \leq r), \quad T_i \to s_i (1 \leq i \leq n - 1), \quad \text{and} \quad X_1 \to t_1,
\]

where \(\zeta = \) a primitive \(r \)th root of unity in \(\mathbb{C} \),

then the presentation for \(H_{n,r} \) above becomes a presentation for \(\mathbb{C}[G_{n,r}] \).

1.1. \(r \)-partitions.

We use the usual notation for partitions found in [Mac]. We identify a a partition with its Young diagram, let \(\ell(\lambda) \) denote the number of rows of \(\lambda \), and \(|\lambda| \) denote the number of boxes in \(\lambda \). For example, \(\lambda = (5, 5, 3, 1) \) has \(\ell(\lambda) = 5 \) and \(|\lambda| = 15 \).

An \(r \)-tuple of partitions \(\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)}) \) is called an \(r \)-partition. We refer to the \(\lambda^{(k)} \) as the components of \(\lambda \). We let \(|\lambda| = \sum_{k=1}^r |\lambda^{(k)}| \) denote the total number
of boxes in λ, and we let $\ell(\lambda) = \sum_{k=1}^\ell(\lambda^{(k)})$ denote the total number of rows in λ. If $|\lambda| = n$, then we say that λ is an r-partition of n. For example, if $r = 5$, then

$$\lambda = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{has } \ell(\lambda) = 11 \text{ and } |\lambda| = 24,$$

and, for example, $\lambda^{(2)} = (3, 3, 1, 1)$. We let $\mathcal{P}_{n,r}$ denote the set of all r-partitions of n.

1.2. Irreducible Representations and Characters.

It is known by [AK] that the irreducible representations of $H_{n,r}$ are indexed by $\mathcal{P}_{n,r}$. We let V^λ_q denote the irreducible $H_{n,r}$-module corresponding to $\lambda \in \mathcal{P}_{n,r}$, and we let χ^λ_q denote the corresponding irreducible character. The irreducible representations and characters of $G_{n,r}$ are also indexed by $\mathcal{P}_{n,r}$. We denote them by V^λ_1 and χ^λ_1. The construction of V^λ_q in [AK] is such that when $q = 1$ and $u_i = \xi^i$, V^λ_q becomes V^λ_1 and χ^λ_q becomes χ^λ_1.

1.3. Standard Elements.

The conjugacy classes of $G_{n,r}$ are also parameterized by $\mathcal{P}_{n,r}$. Define $t_k = s_k s_{k-1} \cdots s_1 t_1 s_{k-1} \cdots s_1$ for $2 \leq k \leq n$, and define

$$w(1, i) = t_1^i \quad \text{and} \quad w(k, i) = t_k^i s_{k-1} \cdots s_1, \quad 2 \leq k \leq n.$$

For a partition $\mu = (\mu_1, \ldots, \mu_\ell)$ with $|\mu| = n$, define

$$w(\mu, i) = w(\mu_1, i) \times \cdots \times w(\mu_\ell, i)$$

with respect to the embedding $G_{\mu_1, r} \times \cdots \times G_{\mu_\ell, r} \subseteq G_{n, r}$. For $\mu \in \mathcal{P}_{n,r}$, define

$$w_{\mu} = w(\mu^{(1)}, 1) w(\mu^{(2)}, 2) \cdots w(\mu^{(r)}, r).$$

Then $\{w_{\mu} | \mu \in \mathcal{P}_{n,r}\}$ is a set of conjugacy class representatives for $G_{n,r}$. T. Shoji [Sho] defines elements $\xi_1, \ldots, \xi_n \in H_{n, r}$ and shows that the elements $T_1, \ldots, T_{n-1}, \xi_1, \ldots, \xi_n$ generate $H_{n, r}$ in [Sho], §3.6, he gives a presentation of $H_{n, r}$ in terms of generators $T_1, \ldots, T_{n-1}, \xi_1, \ldots, \xi_n$ and relations. The relation between X_1 and the ξ_i is ????? Define

$$a(1, i) = \xi_1^i \quad \text{and} \quad a(k, i) = \xi_k^i T_{k-1} \cdots T_1, \quad 2 \leq k \leq n.$$

For a partition $\mu = (\mu_1, \ldots, \mu_\ell)$ with $|\mu| = n$, define

$$a(\mu, i) = a(\mu_1, i) \times \cdots \times a(\mu_\ell, i)$$

with respect to the embedding $H_{\mu_1, r} \otimes \cdots \otimes H_{\mu_\ell, r} \subseteq H_{n, r}$. For $\mu \in \mathcal{P}_{n,r}$, define

$$a_{\mu} = a(\mu^{(1)}, 1) a(\mu^{(2)}, 2) \cdots a(\mu^{(r)}, r).$$

Shoji [Sho], Proposition 7.5, proves that any character of $H_{n, r}$ is completely determined by its value on the set $\{a_{\mu} | \mu \in \mathcal{P}_{n,r}\}$.
2. Symmetric Functions

In this section, we follow [Mac], Appendix B, and [Sho] and define symmetric
functions indexed by r-partitions.

Let m_1, \ldots, m_r be positive integers satisfying $m_k \geq n$ for each $1 \leq k \leq r$, and
let $m = \sum_{k=1}^{r} m_k$. We define a set x of m indeterminates as follows
\[x^{(k)} = \{x_{1}^{(k)}, \ldots, x_{m_k}^{(k)}\}, \quad 1 \leq k \leq r, \]
\[x = x^{(1)} \cup \cdots \cup x^{(r)}. \]
We say that the indeterminates in $x^{(k)}$ are of color k, and we linearly order the
indeterminates $x = x_1^{(1)}, \ldots, x_m^{(r)}$ by the rule,
\[x_i^{(k)} < x_j^{(\ell)} \text{ if and only if } k < \ell \text{ or } k = \ell \text{ and } i < j. \]

It is sometimes notationally convenient to identify the variables $x = x_1^{(1)}, \ldots, x_m^{(r)}$
with the variables $x = x_1, \ldots, x_m$ as follows,

\[
\begin{array}{cccccccc}
 x_1, & x_2, & \ldots, & x_m, & x_{m_1+1}, & x_{m_1+2}, & \ldots, & x_m,
 \\
 x_1^{(1)}, & x_2^{(1)}, & \ldots, & x_{m_1}^{(1)}, & x_1^{(2)}, & x_2^{(2)}, & \ldots, & x_m^{(r)}.
\end{array}
\]

To do this explicitly, set $x_j = x_j^{(b(j))}$, with $d_j = \sum_{i=1}^{b(j)} m_i$, and we define a function
\[b(j) = k, \text{ where } m_1 + \ldots + m_k < j \leq m_1 + \ldots + m_{k+1}, \]
so that $b(j)$ gives the color of the indeterminate x_j. We will interchangeably use these
two notations for variables.

Recall from Section 1, that ζ is a primitive rth root of unity in \mathbb{C}. For integers
$t \geq 1$ and $1 \leq i \leq r$, let
\[p_i^{(j)}(x) = \sum_{j=1}^{r} \zeta^{ij} p_i(x^{(j)}), \]
where $p_i(x^{(j)})$ denotes the ith power sum symmetric function ([Mac], I§2) with
respect to the variables $x^{(j)}$. As a special case, we let $p_0^{(j)}(x) = 1$ for each i. For
$\mu \in \mathcal{P}_{n,r}$ with $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$ and $\mu^{(k)} = (\mu_1^{(k)}, \ldots, \mu_{\ell_k}^{(k)})$, define
\[p_\mu(x) = \prod_{k=1}^{r} \prod_{j=1}^{\ell_k} p_{\mu_{j}^{(k)}}^{(k)}(x). \]

Definition (2.5) is given in [Sho] and it is the complex conjugate of the definition of
p_μ given in [Mac].

Now we define the Schur function associated to $\lambda \in \mathcal{P}_{n,r}$ by
\[s_\lambda(x) = \prod_{k=1}^{r} s_{\lambda^{(k)}}(x^{(k)}), \]
where $s_{\lambda^{(k)}}(x^{(k)})$ denotes the Schur function ([Mac], I§3) associated to the partition
$\lambda^{(k)}$ with respect to the variables $x^{(k)}$. If $\lambda \in \mathcal{P}_{n,r}$, then a column-strict tableau of
shape λ is a filling of the boxes of λ with integers such that for each k
(1) $\lambda^{(k)}$ contains integers from the set $\{1, \ldots, m_k\}$,
(2) the columns of $\lambda^{(k)}$ strictly increase from top to bottom, and
(3) the rows of $\lambda^{(k)}$ weakly increase (do not decrease) from left to right.
For example,
\[
\begin{pmatrix}
1 & 1 & 1 \\
2 & 3 \\
3
\end{pmatrix},
\begin{pmatrix}
1 & 1 & 2 \\
2 & 4 \\
3 & 5 \\
6
\end{pmatrix},
\emptyset,
\begin{pmatrix}
1 & 4 \\
2 & 5 \\
3 & 6 \\
7
\end{pmatrix},
\begin{pmatrix}
1 & 3 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]
is a column-strict tableau of shape λ.

For a column-strict tableau P_λ of shape λ we define
\[
x^{P_\lambda} = \prod_{k=1}^{r} \prod_{j=1}^{m_k} (x^{(k)}_j)^{m_{jk}(P_\lambda)},
\]
where $m_{jk}(P_\lambda)$ denotes the number of times that j appears in the kth component (i.e., $\lambda^{(k)}$) of P_λ. It follows from [Mac] I.5.12 that
\[
s_\lambda(x) = \sum_{P_\lambda} x^{P_\lambda},
\]
where the sum is over all column-strict tableaux P_λ of shape λ.

We now define a deformation of p_μ. Let u denote the parameters u_1, \ldots, u_r. For integers $t \geq 1$ and $1 \leq i \leq r$, let
\[
q_t^{(i)}(x; q, u) = \sum_{I=(i_1, \ldots, i_t)} u_b^{(\max(I))} e(I) (q - q^{-1})^{\ell(I)} x_{i_1} x_{i_2} \cdots x_{i_t},
\]
where $e(I)$ is the number of $i_j \in I$ such that $i_j = i_{j+1}$, $\ell(I)$ is the number of $i_j \in I$ such that $i_j < i_{j+1}$, $\max(I)$ is the maximum element of I, and b is the function defined in (2.3). This definition of $q_t^{(i)}$ is given in [Sho]. For $\mu \in P_{n,r}$ with $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$ and $\mu^{(k)} = (\mu^{(k)}_1, \ldots, \mu^{(k)}_{t_k})$, define
\[
q_\mu(x; q, u) = \prod_{k=1}^{r} \prod_{j=1}^{t_k} q_{u_k}^{(k)}(x; q, u).
\]
Note that when $q = 1$ and $u_i = \zeta^i$, we have $q_\mu = p_\mu$.

In [Mac], Appendix B, (9.7), we find the following Frobenius formula for the irreducible characters of $G_{n,r}$,
\[
p_\mu(x) = \sum_{\lambda \in P_{n,r}} \chi^{\lambda}(w_\mu) s_\lambda(x),
\]
for each $\mu \in P_{n,r}$. Shoji [Sho] extends this formula to a Frobenius formula for the irreducible characters of $H_{n,r}$,
\[
q_\mu(x; q, u) = \sum_{\lambda \in P_{n,r}} \chi^{\lambda}(a_\mu) s_\lambda(x),
\]
for each $\mu \in P_{n,r}$.

We say that $I = (i_1, \ldots, i_t)$ is an up-down sequence if there exists an s, with $0 \leq s \leq t$, such that
\[
i_1 < \cdots < i_s < i_{s+1} \geq \cdots \geq i_t,
\]
for some s, with $0 \leq s < t$,
and we say that i_{s+1} is the peak of the up-down sequence I. Note that any of i_1, \ldots, i_t can potentially be the peak of an up-down sequence $I = (i_1, \ldots, i_t)$.
Following [Ra2], we define the weight

\[(2.13) \quad \text{wt}(i_1, \ldots, i_t) = \begin{cases} 0, & \text{if } i_1, \ldots, i_t \text{ is not an up-down sequence} \\ (-q)^{s-1}q^{t-1-s}, & \text{if } i_1 < \cdots < i_s < i_{s+1} \geq \cdots \geq i_t. \end{cases} \]

If \(t = 1 \) the weight is \(\text{wt}(i_1) = 1 \).

Lemma 2.1. [Ra2] Let \(I = (i_1, \ldots, i_t) \) with \(1 \leq i_1 \leq i_2 \leq \cdots \leq i_t \leq m \), and let \(S_I \) denote the set of all distinct permutations of \(I \). Then

\[q^{e(I)}(q - q^{-1})^{t(I)} = \sum_{\sigma \in S_I} \text{wt}(\sigma I) \]

where \(e(I) \) is the number of \(i_j \in I \) such that \(i_j = i_{j+1} \) and \(t(I) \) is the number of \(i_j \in I \) such that \(i_j < i_{j+1} \).

Proof. In [Ra2], Lemma 1.5, Ram proves the first equality below

\[
\sum_{I=(i_1, \ldots, i_t)} q^{e(I)}(q - q^{-1})^{t(I)} x_{i_1} \cdots x_{i_t} = \sum_{I=(i_1, \ldots, i_t)} \text{wt}(I) x_{i_1} \cdots x_{i_t} = \sum_{s=1}^{i_t} \sum_{\sigma \in S_I} \text{wt}(\sigma I) x_{i_1} \cdots x_{i_t}.
\]

The second equality follows from the fact that \(x_{i_1} \cdots x_{i_t} = x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}} \) for all \(\sigma \in S_I \). The result is obtained by comparing coefficients of \(x_{i_1} \cdots x_{i_t} \). \(\square \)

Proposition 2.2. For integers \(t \geq 1 \) and \(1 \leq k \leq r \), we have

\[q^{t(k)}(x; q, u) = \sum_{i_1 < \cdots < i_s < i_{s+1} \geq \cdots \geq i_t} (-q)^{s}q^{t-1-s}u^{k}_{i} x_{i_1} \cdots x_{i_t}, \]

where the sum is over all up-down sequences with \(i_1 < \cdots < i_s < i_{s+1} \geq \cdots \geq i_t \) and \(1 \leq i_j \leq m \).

Proof. As in Lemma 2.1, let \(S_I \) denote the set of distinct permutations of \(I \). For all \(\sigma \in S_I \) we have \(\max(I) = \max(\sigma(I)) \) and \(x_{i_1} \cdots x_{i_t} = x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}} \). Furthermore, if \(I \) is an up-down sequence then its peak is \(\max(I) = i_{s+1} \).

Since \(\text{wt}_q \) is 0 on sequences that are not up-down, we can first write

\[
\sum_{I=(i_1, \ldots, i_t)} \text{wt}(I)u^{k}_{i} x_{i_1} \cdots x_{i_t} = \sum_{I=(i_1, \ldots, i_t)} \text{wt}(I)u^{k}_{i} x_{i_1} \cdots x_{i_t},
\]

where the left sum is over up-down sequences and the right sum is over arbitrary sequences \(I = (i_1, \ldots, i_t) \) with \(1 \leq i_t \leq m \). Now, we use Lemma 2.1 to write the
sum over non-decreasing sequences
\[
\sum_{I=(i_1, \ldots, i_t)} \text{wt}(I) u_{b_{\ell(I)}(I)}^k x_{i_1} \cdots x_{i_t} = \sum_{I=(i_1, \ldots, i_t)} \sum_{\sigma \in S_I} \text{wt}(\sigma I) u_{b_{\ell(I)}(\sigma I)}^k x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}}
\]
\[
= \sum_{I=(i_1, \ldots, i_t)} u_{b_{\ell(I)}(I)}^k x_{i_1} \cdots x_{i_t} \sum_{\sigma \in S_I} \text{wt}(\sigma I)
\]
\[
= \sum_{I=(i_1, \ldots, i_t)} q^{\ell(I)}(q - q^{-1})^{\ell(I)} u_{b_{\ell(I)}(I)}^k x_{i_1} \cdots x_{i_t},
\]
by the definition (2.9) of \(q^k \).

Let \(\mu \in \mathcal{P}_{n,r} \). The row reading tableau \(R_\mu \) of shape \(\mu \) is the \(r \)-partition \(\mu \) with the boxes filled in with the numbers \(1, \ldots, n \) so that \(\mu^{(1)} \) contains the numbers \(1, \ldots, \lfloor \mu^{(1)} \rfloor \) in order from left-to-right and top-to-bottom, \(\mu^{(2)} \) contains the numbers \(\lfloor \mu^{(1)} \rfloor + 1, \ldots, \lfloor \mu^{(1)} \rfloor + \lfloor \mu^{(2)} \rfloor \) in order from left-to-right and top-to-bottom, and so on. For \(1 \leq i \leq n \) we define the component function \(c_{R_\mu}(i) \) by

\[
\begin{align*}
\text{if } i = k, & \quad \text{if } i \text{ is in the } k\text{th component of } R_\mu. \\
\text{if } k, k+1, \ldots, k+t \text{ is a row of } R_\mu, & \quad \text{then} \\
\text{the subsequence } i_k, i_{k+1}, \ldots, i_{k+t} & \quad \text{is an up-down sequence,} \\
\text{i.e., } i_k < i_{k+1} < \cdots < i_t & \quad \text{if } i \geq i_{k+t}. \\
\end{align*}
\]

The index \(i_\mu \), shown above, is the peak of the row. When \(I \) is a \(\mu \)-up-down sequence, we let \(P_\mu \) denote the set of peaks \(i_\mu \) in \(I \), one for each row of \(R_\mu \). We define the \(\mu \)-weight of a sequence \(I = (i_1, \ldots, i_n) \) by

\[
\text{wt}_\mu(I) = \begin{cases}
0, & \text{if } I \text{ is not a } \mu\text{-up-down sequence,} \\
(-q^{-1})^{\ell(I)} q^{\gamma(I)} \prod_{i_\mu \in P_\mu} c_{R_\mu}(i_\mu), & \text{if } I \text{ is a } \mu\text{-up-down sequence,}
\end{cases}
\]

where \(\gamma(I) \) is the number of \(i_j \geq i_{j+1} \) with \(j \) and \(j+1 \) in the same row of \(R_\mu \) and \(\ell(I) \) is the number of \(i_{j} < i_{j+1} \) with \(j \) and \(j+1 \) in the same row of \(R_\mu \).

Example 2.3. Let \(\mu = ((5, 1), (3, 3, 1, 1), 0, (2, 2, 2), (4)) \). The row reading tableau of shape \(\mu \) is

\[
R_\mu = \begin{pmatrix}
6 & 12 & 15 & 18 & 21 & 22 & 23 & 24 \\
7 & 8 & 9 & 10 & 11 & 12 & 13 \\
14 & \emptyset & 15 & 16 & 17 & 18 & 19 & 20 \end{pmatrix}
\]

The following sequence is a \(\mu \)-up-down sequence

\[
I = [7, 11, 12, 4][10][48, 70, 75][75, 75, 30][1][50][72, 25][16, 18][119, 97][5, 80, 79, 25].
\]
The braces group the components elements according to the rows of R, the vertical bars indicate the separation between the components of R, and the numbers in boldface are the peaks of their rows. The μ-weight of I is

$$\text{wt}_\mu(I) = ((-q^{-1})^2q^2u_1)u_5((-q^{-1})^2u_4^2q^2u_4^2)u_5^2(qu_4^4)(-q^{-1}u_1^4)(qu_4^4)(-q^{-1}q^2u_4^4)$$

$$= (-q^{-1})^2q^2u_1^2u_3u_4^2u_5^3.$$

\[\square\]

The definition (2.10) of q_μ can be thought of as a product of $q_i^{(k)}$ over the rows of R, where t is the length of the row and k is the component of the row. Thus the following colollary is immediate from Proposition 2.2.

Corollary 2.4. For $\mu \in P_{n,r}$,

$$q_\mu(x; q, u) = \sum_{i_1, \ldots, i_n} \text{wt}_\mu(i_1, \ldots, i_n) x_{i_1} \cdots x_{i_n},$$

where the sum is over all μ-up-down sequences (i_1, \ldots, i_n) and wt_μ is defined in (2.15).

3. **RSK Insertion and Roichman Weights**

If $\lambda \in P_{n,r}$, then a standard tableau Q_λ of shape λ is a filling of the boxes of λ with integers from $\{1, 2, \ldots, n\}$ such that each integer from $\{1, 2, \ldots, n\}$ appears in Q_λ exactly once, and for each $1 \leq k \leq r$

1. the columns of $\lambda^{(k)}$ strictly increase from top to bottom, and
2. the rows of $\lambda^{(k)}$ strictly increase from left to right.

The Robinson-Schensted-Knuth (RSK) insertion scheme [Sta] is an algorithm which gives a bijection between sequences x_{i_1}, \ldots, x_{i_n}, with $1 \leq i_j \leq m$, and pairs (P, Q) where P is a column-strict tableau, Q is a standard tableau, and P and Q have shape λ for some partition λ with n boxes. The RSK insertion algorithm constructs the pair of tableaux (P, Q) iteratively,

$$(\emptyset, \emptyset) = (P_0, Q_0), (P_1, Q_1), \ldots, (P_n, Q_n) = (P, Q),$$

in such a way that

1. P_j is a column strict tableau that contains j boxes, and Q_j is a standard tableau that has the same shape as P_j,
2. P_j is obtained from P_{j-1} by column inserting i_j into P_{j-1}, denoted $P_j = P_{j-1} \leftarrow i_j$,
3. Q_j is obtained from Q_{j-1} by putting j in the newly added box (i.e., the box created in going from P_{j-1} to P_j).

The standard tableau Q is called the recording tableau.

We extend the RSK algorithm to work for tableaux whose shape are r-partitions. Given a sequence $x_{(k_1)}, x_{(k_2)}, \ldots, x_{(k_n)}$, with $1 \leq k_j \leq r$ and $1 \leq i_j \leq m_{k_j}$, we construct a sequence $(\emptyset, \emptyset) = (P_0, Q_0), \ldots, (P_n, Q_n) = (P, Q)$, where P_t is a column-strict tableau, Q_t is a standard tableau, and P_t and Q_t have the same r-partition shape. We insert $x_{(k_i)}$ into a semistandard tableau P_{j-1} having r-partition shape as follows

$$(3.1) \quad (P_{j-1}^{(1)}, \ldots, P_{j-1}^{(r)}) \leftarrow x_{(k_i)} = (P_{j-1}^{(1)}, \ldots, P_{j-1}^{(k_i)} \leftarrow x_{(k_i)}^{(k_i)}, \ldots, P_{j-1}^{(r)}).$$
where we use usual column insertion to insert variables of type k into the kth component of P_{j-1}.

For example, if $r = 3$ the result of inserting $x_2^{(1)}, x_1^{(2)}, x_4^{(2)}, x_1^{(3)}$ is

$$P_i : (\emptyset, \emptyset, \emptyset), (\{1\}, \emptyset, \emptyset), (\{2\}, 1, 0), (\{2\}, 1, 1), (\{2\}, 1, 1, 0), (\{2\}, 1, 1, 0),$$

$$Q_i : (\emptyset, \emptyset, \emptyset), (\{1\} 2, \emptyset), (\{1\} 2, \emptyset), (\{1\} 2, 1, 0), (\{1\} 2, 1, 1, 0),$$

To see that this insertion provides a bijection, we can construct the inverse algorithm by using usual column uninsertion, in the reverse order of the entries of Q, and using the component of P to tell us the type of the uninserted variable. We denote this bijection by

$$(P, Q) \xrightarrow{\text{RSK}} x_{i_1}^{(k_1)}, \ldots, x_{i_n}^{(k_n)}$$

Let Q_λ be a standard tableau of shape $\lambda \in \mathcal{P}_{n,r}$. If a and b are entries of Q_λ, we say that

a is southwest of b (denoted $a \preceq Q b$) if

$$a \in \lambda(k), b \in \lambda(\ell), \text{ and } k > \ell,$$

or

a is south (below) and/or west (left) of b in $\lambda(k)$,

a is northeast of b (denoted $a \succeq Q b$) if

$$a \in \lambda(k), b \in \lambda(\ell), \text{ and } k < \ell,$$

or

a is north (above) and/or east (right) of b in $\lambda(k)$.

In the ordering on our indeterminates, we have $x_i^{(k)} < x_j^{(\ell)}$ if $k < \ell$ or $k = \ell$ and $i < j$. The following proposition is an immediate consequence of this fact and well-known facts about RSK insertion (see [Sta] or [Ra2], Proposition 2.1).

Proposition 3.1. Let $P_{j+1} = (P_{j-1} \leftarrow x_{i_{j+1}}^{(k_j)}) \leftarrow x_{i_{j+1}}^{(k_j)}$, where P_{j-1} is a column-strict tableau, and let Q_{j+1} be the associated recording tableau.

1. If $x_{i_{j+1}}^{(k_j)} < x_{i_{j+1}}^{(k_{j+1})}$ then $j + 1$ appears southwest ($\preceq Q$) of j in Q_{j+1}.
2. If $x_{i_{j+1}}^{(k_j)} \geq x_{i_{j+1}}^{(k_{j+1})}$ then $j + 1$ appears northeast ($\succeq Q$) of j in Q_{j+1}.

Let $\mu, \lambda \in \mathcal{P}_{n,r}$. We say that a standard tableau Q_λ of shape λ is a μ-SW-NE tableau if it satisfies the following property

$$k < (k + 1) \leq \cdots \leq p \geq \cdots \geq (k + t) \text{ in } Q_\lambda$$

The index p, shown above, is the turn-around point of the row. When I is a μ-up-down sequence, we let $P_{Q\lambda}$ denote the set of turn-arounds p in Q_λ, one for each row of R_μ.

We define the μ-weight of a standard tableau Q_λ by

$$\text{wt}_\mu(Q_\lambda) = \begin{cases} 0, & \text{if } Q_\lambda \text{ is not a } \mu\text{-SW-NE tableau}, \\ (-q^{-1})^{\ell(Q_\lambda)} q^{\gamma(Q_\lambda)} \prod_{i_p \in P_{Q\lambda}} e_{b_i(p)}(p), & \text{if } Q_\lambda \text{ is a } \mu\text{-SW-NE tableau,} \end{cases}$$

where $e_{b_i(p)}(p)$ is the pth column of the tableau Q_λ.
where $\gamma(Q_{\lambda})$ is the number of $j \geq j' + 1$ in Q_{λ} with j and $j + 1$ in the same row of R_{μ} and $\ell(Q_{\lambda})$ is the number of $j \leq j' + 1$ in Q_{λ} with j and $j + 1$ in the same row of R_{μ}.

Example 3.2. Let $n = 24$, $r = 5$, $m_1 = m_2 = m_4 = m_5 = 24$, $m = 120$, and $\mu = ((5, 1), (3, 3, 1, 1), \emptyset, (2, 2, 2), (4))$. We will insert the up-down sequence of Example 2.7. First we apply the bijection (2.2) to give the variables their color superscript thereby converting

$I = [7, 11, 12, 12, 4][110][48, 70, 75][75, 75, 30][1][50][72, 25][16, 18][119, 97][5, 80, 79, 25]$

to

$[1^{(1)}, 2^{(1)}, 3^{(1)}, 4^{(1)}, 5^{(1)}][6^{(1)}][7^{(1)}, 8^{(1)}, 9^{(1)}][10^{(1)}, 11^{(1)}, 12^{(1)}][13^{(1)}][14^{(1)}][15^{(1)}, 16^{(1)}][17^{(1)}, 18^{(1)}][19^{(1)}, 20^{(1)}][21^{(1)}, 22^{(1)}, 23^{(1)}, 24^{(1)}]$

Upon inserting these variables we get

$Q_{\lambda} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & \emptyset, 15 & 16 & 21 & 22 & 23 & 24 \end{pmatrix}$

and

$P_{\lambda} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & \emptyset, 15 & 16 & 21 & 22 & 23 & 24 \end{pmatrix}$

The weight of Q_{λ} is the same as the weight of the sequence I, shown in Example 2.3.

Theorem 3.3. Let $\mu \in \mathcal{P}_{n, r}$, then

$$q_{\mu}(x; q, u) = \sum_{\lambda \in \mathcal{P}_{n, r}} \left(\sum_{Q_{\lambda}} \text{wt}_{\mu}(Q_{\lambda}) \right) s_{\lambda}(x),$$

where the inner sum is over all standard tableaux Q_{λ} of shape λ.

Proof. Comparing (2.14), (2.15) and (3.2), (3.3), we see that our insertion satisfies

if \((P_{\lambda}, Q_{\lambda}) \stackrel{\text{RSK}}{\rightarrow} x_{i_1}, \ldots, x_{i_n} \), then \(\text{wt}_{\mu}(i_1, \ldots, i_n) = \text{wt}_{\mu}(Q_{\lambda}) \).

We now apply RSK insertion to the formula for q_{μ} found in Corollary 2.4:

$$q_{\mu}(x; q, u) = \sum_{i_1, \ldots, i_n} \text{wt}_{\mu}(i_1, \ldots, i_n) x_{i_1} \cdots x_{i_n}$$

$$= \sum_{\lambda \in \mathcal{P}_{n, r}} \sum_{Q_{\lambda}} \text{wt}_{\mu}(Q_{\lambda}) x_{P_{\lambda}}$$

$$= \sum_{\lambda \in \mathcal{P}_{n, r}} \sum_{Q_{\lambda}} \text{wt}_{\mu}(Q_{\lambda}) \sum_{P_{\lambda}} x_{P_{\lambda}}$$

$$= \sum_{\lambda \in \mathcal{P}_{n, r}} \sum_{Q_{\lambda}} \text{wt}_{\mu}(Q_{\lambda}) s_{\lambda}(x),$$
where P' varies over all column-strict tableaux of shape λ and Q' varies over all standard tableaux of shape λ.

The Schur functions s_λ are linearly independent [Mac], Appendix B (7.4), so comparing coefficients of s_λ in (2.12) and Theorem 3.3 gives

Corollary 3.4. For $\lambda, \mu \in \mathcal{P}_{n,r}$, we have

$$
\chi_\lambda^\mu(a_\mu) = \sum_{Q} w^\mu(Q)\chi_\lambda(Q),
$$

where $\chi_\lambda^\mu(a_\mu)$ is the irreducible character of $H_{n,r}$ indexed by λ and evaluated at a_μ and the sum is over all standard tableaux Q of shape λ.

Remark 3.5. Upon setting $q = 1$ and $u_i = \zeta^i$, the formulas in Theorem 3.3 and Corollary 3.4 become a symmetric function identity (3.4) $p_\mu(x) = \sum_{\lambda \in \mathcal{P}_{n,r}} \left(\sum_{Q} w^\mu(Q)\chi_\lambda(Q) \right) s_\lambda(x)$, and a character formula (3.5) $\chi_\lambda^\mu(w_\mu) = \sum_{Q} w^\mu(Q)\chi_\lambda(Q)$, for the complex reflection group $G_{n,r}$.

Remark 3.6. Let $f_\lambda = \dim(V_\lambda^1) = \chi_\lambda^1(1)$. This dimension is equal to the number of standard tableaux of shape λ. As a special case of our insertion, we can restrict to sequences $x_{i_1}^{(k_1)}, \ldots, x_{i_n}^{(k_n)}$ where i_1, \ldots, i_n is a permutation of $1, \ldots, n$ and $1 \leq k_i \leq r$. There are $n!r^n$ such sequences. Furthermore, when we insert these special sequences, we get a pair (P, Q) of standard tableaux (the column-strict tableau P is standard because all the subscripts are unique). Thus, our modified RSK insertion gives a bijective proof of the identity (3.6) $n!r^n = \sum_{\lambda \in \mathcal{P}_{n,r}} f_\lambda^1$, which also follows by decomposing the regular representation of $G_{n,r}$ into irreducibles and comparing dimensions.

References

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, MACALESTER COLLEGE, SAINT PAUL, MINNESOTA 55105
E-mail address: acantrell@macalester.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, MACALESTER COLLEGE, SAINT PAUL, MINNESOTA 55105
E-mail address: halverson@macalester.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, MACALESTER COLLEGE, SAINT PAUL, MINNESOTA 55105
E-mail address: btmiller@macalester.edu