Abstract

For a finite subgroup G of the special unitary group SU_2, we study the centralizer algebra $Z_k(G) = \text{End}_G(V \otimes k)$ of G acting on the k-fold tensor product of its defining representation $V = \mathbb{C}^2$. These subgroups are in bijection with the simply-laced affine Dynkin diagrams. The McKay correspondence relates the representation theory of these groups to the associated Dynkin diagram, and we use this connection to show that the structure and representation theory of $Z_k(G)$ as a semisimple algebra is controlled by the combinatorics of the corresponding Dynkin diagram.

Introduction

In 1980, John McKay [Mc] made the remarkable discovery that there is a natural one-to-one correspondence between the finite subgroups of the special unitary group SU_2 and the simply-laced affine Dynkin diagrams. Let $V = \mathbb{C}^2$ be the defining representation of SU_2 and let G be a finite subgroup of SU_2 with irreducible modules $G, \lambda \in \Lambda(G)$. The representation graph $R_V(G)$ (also known as the McKay graph or McKay quiver) has vertices indexed by the $\lambda \in \Lambda(G)$ and $a_{\lambda, \mu}$ edges from λ to μ if $G\mu$ occurs in $G\lambda \otimes V$ with multiplicity $a_{\lambda, \mu}$. Almost a century earlier, Felix Klein had determined that a finite subgroup of SU_2 must be one of the following: (a) a cyclic group C_n of order n, (b) a binary dihedral group D_n of order $4n$, or (c) one of the 3 exceptional groups: the binary tetrahedral group T, the binary octahedral group O, or the binary icosahedral group I of order 120. McKay’s observation was that the representation graph of C_n, D_n, T, O, I corresponds exactly to the Dynkin diagram \hat{A}_{n-1}, \hat{D}_{n+2}, \hat{E}_6, \hat{E}_7, \hat{E}_8, respectively (see Section 4.1 below).

In this paper, we examine the McKay correspondence from the point of view of Schur-Weyl duality. Since the McKay graph provides a way to encode the rules for tensoring by V, it is natural to consider the k-fold tensor product module $V^\otimes k$ and to study the centralizer algebra $Z_k(G) = \text{End}_G(V^\otimes k)$ of endomorphisms that commute with the action of G on $V^\otimes k$. The algebra $Z_k(G)$ provides essential information about the structure of $V^\otimes k$ as a G-module, as the projection maps from $V^\otimes k$ onto its irreducible G-summands are idempotents in $Z_k(G)$, and the multiplicity of $G\lambda$ in $V^\otimes k$ is the dimension of the $Z_k(G)$-irreducible module corresponding to λ. The problem of studying centralizer algebras of tensor powers of the natural G-module $V = \mathbb{C}^2$ for $G \subseteq SU_2$ via the McKay correspondence is discussed in [GHJ] 4.7.d in the general framework of derived towers, subfactors, and von Neumann algebras, an approach not adopted here. Our aim is to develop the structure and representation theory of the algebras $Z_k(G)$ and to show how they are controlled by
the combinatorics of the representation graph \(\mathcal{R}_V(G) \) (the Dynkin diagram) via double-centralizer theory (Schur-Weyl duality). In particular,

- the irreducible \(Z_k(G) \)-modules are indexed by the vertices of \(\mathcal{R}_V(G) \) which correspond to the irreducible modules \(G^k \) that occur in \(V^\otimes k \);
- the dimensions of these modules enumerate walks on \(\mathcal{R}_V(G) \) of \(k \) steps;
- the dimension of \(Z_k(G) \) equals the number of walks of \(2k \) steps on \(\mathcal{R}_V(G) \) starting and ending at the node 0, which corresponds to the trivial \(G \)-module and is the affine node of the Dynkin diagram;
- the Bratteli diagram of \(Z_k(G) \) (see Section 4.2) is constructed recursively from \(\mathcal{R}_V(G) \); and
- when \(k \) is less than or equal to the diameter of the graph \(\mathcal{R}_V(G) \), the algebra \(Z_k(G) \) has generators labeled by nodes of \(\mathcal{R}_V(G) \), and the relations they satisfy are determined by the edge structure of \(\mathcal{R}_V(G) \).

Since \(G \subseteq SU_2 \), the centralizer algebras satisfy the reverse inclusion \(Z_k(SU_2) \subseteq Z_k(G) \). It is well known that \(Z_k(SU_2) \) is isomorphic to the Temperley-Lieb algebra \(TL_k(2) \). Thus, the centralizer algebras constructed here all contain a Temperley-Lieb subalgebra. The dimension of \(TL_k(2) \) is the Catalan number \(C_k = \frac{1}{k+1} \binom{2k}{k} \), which counts walks of \(2k \) steps that begin and end at 0 on the representation graph of \(SU_2 \), i.e. the Dynkin diagram \(A_{+\infty} \), (see (1.3)).

Our paper is organized as follows:

1. In Section 1, we derive general properties of the centralizer algebras \(Z_k(G) \). Many of these results hold for subgroups \(G \) of \(SU_2 \) that are not necessarily finite. We study the tower \(Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \cdots \) and show that \(Z_k(G) \) can be constructed from \(Z_{k-1}(G) \) by adjoining generators that are (essential) idempotents; usually there is just one except when we encounter a branch node in the graph. By using the Jones basic construction, we develop a procedure for constructing idempotent generators of \(Z_k(G) \) inspired by the Jones-Wenzl idempotent construction.

2. Section 2 examines the special case that \(G \) is the cyclic subgroup \(C_n \). In Theorems 2.7 and 2.16 we present dimension formulas for \(Z_k(C_n) \) and for its irreducible modules and explicitly exhibit a basis of matrix units for \(Z_k(C_n) \). These matrix units can be viewed using diagrams that correspond to subsets of \(\{1, 2, \ldots, 2k\} \) that satisfy a special \(\mod n \) condition (see Remark 2.13). We also consider the case that \(G \) is the infinite cyclic group \(C_\infty \), which has as its representation graph the Dynkin diagram \(A_\infty \). Our results on \(C_\infty \), which are summarized in Theorem 2.21, show that \(Z_k(C_\infty) \) can be regarded, in some sense, as the limiting case of \(Z_k(C_n) \) as \(n \) grows large. The algebra \(Z_k(C_\infty) \) is isomorphic to the planar rook algebra \(PR_k \) (see Remark 2.22).

3. Section 3 is devoted to the case that \(G \) is the binary dihedral group \(D_n \). We compute \(\dim Z_k(D_n) \) and the dimensions of the irreducible \(Z_k(D_n) \)-modules and construct a basis of matrix units for \(Z_k(D_n) \) (see Theorems 3.13 and 3.29). These matrix units can be described diagrammatically using diagrams that correspond to set partitions of \(\{1, 2, \ldots, 2k\} \) into at most 2 parts that satisfy a certain \(\mod n \) condition. Theorem 3.42 treats the centralizer algebra \(Z_k(D_\infty) \) of the infinite dihedral group \(D_\infty \), which has as its representation graph the Dynkin diagram \(D_\infty \) and can be viewed as the limiting case of the groups \(D_n \).
(4) In Section 4, we illustrate how the results of Section 2 can be used to compute \(\dim Z_k(G) \) for \(G = T, O, I \) and the dimensions of the irreducible modules of these algebras. The case of \(I \) is noteworthy, as the expressions involve the Lucas numbers.

The names for the exceptional subgroups \(T, O, I \) derive from the fact that they are 2-fold covers of classical polyhedral groups. Modulo the center \(Z(G) = \{1, -1\} \), these groups have the following quotients:

- \(T/\{1, -1\} \cong A_4 \), the alternating group on 4 letters, which is the rotation group of the tetrahedron;
- \(O/\{1, -1\} \cong S_4 \), the symmetric group on 4 letters, which is the rotation group of the cube; and
- \(I/\{1, -1\} \cong A_5 \), the alternating group on 5 letters, which is the rotation group of the icosahedron.

An exposition of this result based on an argument of Weyl can be found in [Si, Sec. 1.4]. Our sequel [BH] studies the exceptional centralizer algebras \(Z_k(G) \) for \(G = T, O, I \), giving a basis for them and exhibiting remarkable connections between them, the Jones-Martin partition algebras, and partitions.

Acknowledgments. The idea of studying McKay centralizer algebras was inspired by conversations of T. Halverson with Arun Ram, whom we thank for many useful discussions in the initial stages of the investigations. The project originated as part of the senior capstone thesis [Ba] of J. Barnes at Macalester College under the direction of T. Halverson. In [Ba], Barnes found matrix unit bases, in a different format from what is presented here, for \(Z_k(C_n) \) and \(Z_k(D_n) \) and discovered and proved the dimension formulas in Theorem 4.1.

This paper was begun while the authors (G.B. and T.H.) participated in the program Combinatorial Representation Theory at the Mathematical Sciences Research Institute (MSRI) in Spring 2008. They acknowledge with gratitude the hospitality and stimulating research environment of MSRI. G. Benkart is grateful to the Simons Foundation for the support she received as a Simons Visiting Professor at MSRI. T. Halverson was partially supported by National Science Foundation grant DMS-0800085 and J. Barnes by National Science Foundation grant DMS-0401098.

1 McKay Centralizer Algebras

1.1 \(SU_2 \)-modules

Consider the special unitary group \(SU_2 \) of \(2 \times 2 \) complex matrices defined by

\[
SU_2 = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \bigg| \alpha, \beta \in \mathbb{C}, \alpha \bar{\alpha} + \beta \bar{\beta} = 1 \right\},
\]

where \(\bar{\alpha} \) denotes the complex conjugate of \(\alpha \). For each \(r \geq 0 \), \(SU_2 \) has an irreducible module \(V(r) \) of dimension \(r + 1 \). The module \(V = V(1) = \mathbb{C}^2 \) corresponds to the natural two-dimensional representation on which \(SU_2 \) acts by matrix multiplication. Let \(v_{-1} = (1, 0)^t, v_1 = (0, 1)^t \) (here \(t \) denotes transpose) be the standard basis for this action so that if \(g = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \) then \(gv_{-1} = \alpha v_{-1} - \bar{\beta} v_1 \) and \(gv_1 = \beta v_{-1} + \bar{\alpha} v_1 \).

Finite-dimensional modules for \(SU_2 \) are completely reducible and satisfy the Clebsch-Gordan formula,

\[
V(r) \otimes V = V(r - 1) \oplus V(r + 1),
\]

where \(V(-1) = 0 \). The representation graph \(\mathcal{R}_V(SU_2) \) is the infinite graph with vertices labeled by \(r = 0, 1, 2, \cdots \) and an edge connecting vertex \(r \) to vertex \(r + 1 \) for each \(r \) (which can be thought of as the Dynkin diagram \(A_+\infty \)). Vertex \(r \) corresponds to \(V(r) \), and the edges correspond to the
Let G be a subgroup of SU_2. Then G acts on the natural two-dimensional representation $V = \mathbb{C}^2$ as 2×2 matrices with respect to the basis $\{v_1, v_2\}$. We assume that the tensor powers $V^\otimes k$ of V are completely reducible G-modules (which is always the case when G is finite), and let $\{G^\lambda \mid \lambda \in \Lambda(G)\}$ denote a complete set of pairwise non-isomorphic irreducible finite-dimensional G-modules (which is always the case when G is finite), and let $\Lambda(G)$ be a complete set of pairwise non-isomorphic irreducible G-modules occurring in some $V^\otimes k$ for $k = 0, 1, \ldots$. We adopt the convention that $V^\otimes 0 = \mathbb{C}^{(0)}$, the trivial G-module. The representation graph $\mathcal{R}_V(G)$ (also called the McKay graph or McKay quiver) is the graph with vertices labeled by elements of $\Lambda(G)$ with $a_{\lambda,\mu}$ edges directed from λ to μ if the decomposition of $G^\lambda \otimes V$ into irreducible G-modules is given by

$$G^\lambda \otimes V = \bigoplus_{\mu \in \Lambda(G)} a_{\lambda,\mu} G^\mu. \quad (1.4)$$

The following properties of $\mathcal{R}_V(G)$ hold for all finite subgroups $G \subseteq SU_2$ (see [St]), and we will assume that they hold for the groups considered here:

1. $a_{\lambda,\mu} = a_{\mu,\lambda}$ for all pairs $\lambda, \mu \in \Lambda(G)$.
2. $a_{\lambda,\lambda} = 0$ for all $\lambda \in \Lambda(G)$, $\lambda \neq 0$.
3. If $G \neq \{1\}, \{1, -1\}$, where 1 is the 2×2 identity matrix, then $a_{\lambda,\mu} \in \{0, 1\}$ for all $\lambda, \mu \in \Lambda(G)$.

Thus, $\mathcal{R}_V(G)$ is an undirected, simple graph. Since V is faithful (being the defining module for G), all irreducible G-modules occur in some $V^\otimes k$ when G is finite, and thus $\mathcal{R}_V(G)$ is connected. Moreover, if $c_{\lambda,\mu} = 2\delta_{\lambda,\mu} - a_{\lambda,\mu}$ for $\lambda, \mu \in \Lambda(G)$, where $\delta_{\lambda,\mu}$ is the Kronecker delta, then McKay [Mc] observed that $\mathcal{C}(G) = [c_{\lambda,\mu}]$ is the Cartan matrix corresponding to the simply-laced affine Dynkin diagram of type \hat{A}_{n-1}, \hat{D}_{n+2}, \hat{E}_6, \hat{E}_7, \hat{E}_8, when G is one of the finite groups C_n, D_n, T, O, and I, respectively. The trivial module $\mathbb{C}^{(0)}$ corresponds to the affine node in those cases.

1.3 Tensor powers and Bratteli diagrams

For $k \geq 1$, the k-fold tensor power $V^\otimes k$ is 2^k-dimensional and has a basis of simple tensors

$$V^\otimes k = \text{span}_\mathbb{C} \{ v_{r_1} \otimes v_{r_2} \otimes \cdots \otimes v_{r_k} \mid r_j \in \{-1, 1\} \}.$$

If $r = (r_1, \ldots, r_k) \in \{-1, 1\}^k$, we adopt the notation

$$v_r = v_{(r_1, \ldots, r_k)} = v_{r_1} \otimes v_{r_2} \otimes \cdots \otimes v_{r_k} \quad (1.5)$$

as a shorthand. Group elements $g \in G$ act on simple tensors by the diagonal action

$$g(v_{r_1} \otimes v_{r_2} \otimes \cdots \otimes v_{r_k}) = g v_{r_1} \otimes g v_{r_2} \otimes \cdots \otimes g v_{r_k}. \quad (1.6)$$
Let

$$\Lambda_k(G) = \{ \lambda \in \Lambda(G) \mid G^\lambda \text{ appears as a summand in the decomposition of } V^{\otimes k} \} \quad (1.7)$$

index the irreducible G-modules occurring in $V^{\otimes k}$. Then, since $\mathcal{R}_V(G)$ encodes the tensor product rule (1.4), $\Lambda_k(G)$ is the set of vertices in $\mathcal{R}_V(G)$ that can be reached by paths of length k starting from 0. Furthermore,

$$\Lambda_k(G) \subseteq \Lambda_{k+2}(G), \quad \text{for all } k \geq 0, \quad (1.8)$$

since if a node can be reached in k steps, then it can also be reached in $k + 2$ steps.

The Bratteli diagram $\mathcal{B}_V(G)$ is the infinite graph with vertices labeled by $\Lambda_k(G)$ on level k and $b_{\lambda,\mu}$ edges from vertex $\lambda \in \Lambda_k(G)$ to vertex $\mu \in \Lambda_{k+1}(G)$. The Bratteli diagram for SU_2 is shown in Figure 1, and the Bratteli diagrams corresponding to C_n, D_n, T, O, I, as well as to the infinite subgroups C_∞, D_∞, are displayed in Section 4.2.

![Figure 1: First 6 levels of the Bratteli Diagram for SU2.](image)

A walk of length k on the representation graph $\mathcal{R}_V(G)$ from 0 to $\lambda \in \Lambda(G)$, is a sequence $(0, \lambda^1, \lambda^2, \ldots, \lambda^k = \lambda)$ starting at $\lambda^0 = 0$, such that $\lambda^j \in \Lambda(G)$ for each $1 \leq j \leq k$, and λ^{j-1} is connected to λ^j by an edge in $\mathcal{R}_V(G)$. Such a walk is equivalent to a unique path of length k on the Bratteli diagram $\mathcal{B}_V(G)$ from 0 $\in \Lambda_0(G)$ to $\lambda \in \Lambda_k(G)$. Let $W_{\lambda}^k(G)$ denote the set of walks on $\mathcal{R}_V(G)$ of length k from $0 \in \Lambda_k(G)$ to $\lambda \in \Lambda_k(G)$, and let $P_{\lambda}^k(G)$ denote the set of paths on $\mathcal{B}_V(G)$ of length k from $0 \in \Lambda_0(G)$ to $\lambda \in \Lambda_k(G)$. Thus, $|P_{\lambda}^k(G)| = |W_{\lambda}^k(G)|$.

A pair of walks of length k from 0 to λ corresponds uniquely (by reversing the second walk) to a walk of length $2k$ beginning and ending at 0. Hence,

$$|W_{2k}^0(G)| = \sum_{\lambda \in \Lambda_k(G)} |W_{\lambda}^k(G)|^2 = \sum_{\lambda \in \Lambda_k(G)} |P_{\lambda}^k(G)|^2 = |P_{2k}^0(G)|. \quad (1.9)$$

Let m_{λ}^k denote the multiplicity of G^λ in $V^{\otimes k}$. Then, by induction on (1.4) and the observations in the previous paragraph, we see that this multiplicity is enumerated as

$$m_{\lambda}^k = |W_{\lambda}^k(G)| = \#(\text{walks on } \mathcal{R}_V(G) \text{ of length } k \text{ from } 0 \text{ to } \lambda) = |P_{\lambda}^k(G)| = \#(\text{paths in } \mathcal{B}_V(G) \text{ of length } k \text{ from } 0 \in \Lambda_0(G) \text{ to } \lambda \in \Lambda_k(G)). \quad (1.10)$$
The first six rows of the Bratteli diagram \(\mathcal{B}_V(\text{SU}_2) \) for \(\text{SU}_2 \) are displayed in Figure 1 and the labels below vertex \(r \) on level \(k \) give the number of paths from the top of the diagram to \(r \), which is also multiplicity of \(V(r) \) in \(V^\otimes k \). These numbers also give the number of walks to \(r \) on the representation graph \(\mathcal{R}_V(\text{SU}_2) \) of length \(k \) from 0 to \(r \). The column to the right contains the sum of the squares of the multiplicities.

1.4 Schur-Weyl duality

The centralizer of \(G \) on \(V^\otimes k \) is the algebra

\[
Z_k(G) = \text{End}_G(V^\otimes k) = \left\{ a \in \text{End}(V^\otimes k) \mid a(gw) = ga(w) \text{ for all } g \in G, w \in V^\otimes k \right\}. \tag{1.11}
\]

If the group \(G \) is apparent from the context, we will simply write \(Z_k \) for \(Z_k(G) \). Since \(V^\otimes 0 = G^{(0)} \), we have \(Z_0(G) = \mathbb{C}I \). There is a natural embedding \(\iota : Z_k(G) \hookrightarrow Z_{k+1}(G) \) given by

\[
\iota : \quad Z_k(G) \rightarrow Z_{k+1}(G) \quad a \mapsto a \otimes 1 \tag{1.12}
\]

where \(a \otimes 1 \) acts as \(a \) on the first \(k \) tensor factors and \(1 \) acts as the identity in the \((k+1)\)st tensor position. Iterating this embedding gives an infinite tower of algebras

\[
Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \cdots. \tag{1.13}
\]

By classical double-centralizer theory (see for example [CR, Secs. 3B and 68]), we know the following:

- \(Z_k(G) \) is a semisimple associative \(\mathbb{C} \)-algebra whose irreducible modules \(\{Z_k^\lambda \mid \lambda \in \Lambda_k(G)\} \) are labeled by \(\Lambda_k(G) \).
- \(\dim Z_k^\lambda = m_k^\lambda = |W_k^\lambda(G)| = |\mathcal{P}_k^\lambda(G)| \).
- The edges from level \(k \) to level \(k-1 \) in \(\mathcal{B}_V(G) \) represent the restriction and induction rules for \(Z_{k-1}(G) \subseteq Z_k(G) \).
- If \(d^\lambda = \dim G^\lambda \), then the tensor space \(V^\otimes k \) has the following decomposition

\[
V^\otimes k \cong \bigoplus_{\lambda \in \Lambda_k(G)} m_k^\lambda G^\lambda \quad \text{as a } G\text{-module}, \nonumber
\]

\[
\cong \bigoplus_{\lambda \in \Lambda_k(G)} d^\lambda Z_k^\lambda \quad \text{as a } Z_k(G)\text{-module}, \tag{1.14}
\]

\[
\cong \bigoplus_{\lambda \in \Lambda_k(G)} \left(G^\lambda \otimes Z_k^\lambda\right) \quad \text{as a } (G,Z_k(G))\text{-bimodule}.
\]

As an immediate consequence of these isomorphisms, we have from counting dimensions that

\[
2^k = \sum_{\lambda \in \Lambda_k(G)} d^\lambda m_k^\lambda. \tag{1.15}
\]

- By general Wedderburn theory, the dimension of \(Z_k(G) \) is the sum of the squares of the dimensions of its irreducible modules,

\[
\dim Z_k(G) = \sum_{\lambda \in \Lambda_k(G)} (m_k^\lambda)^2 = \sum_{\lambda \in \Lambda_k(G)} |W_k^\lambda(G)|^2 = \sum_{\lambda \in \Lambda_k(G)} |\mathcal{P}_k^\lambda(G)|^2. \tag{1.16}
\]
Therefore, it follows from (1.9) that
\[
\dim \mathbb{Z}_k(G) = \sum_{\lambda \in \Lambda_k(G)} (m^\lambda_k)^2 = m^0_{2k} = |\mathcal{W}^0_{2k}(G)| = \dim \mathbb{Z}^{(0)}_{2k},
\]
the number of walks on \(\mathcal{R}_V(G)\) (which is the associated Dynkin diagram when \(G\) is a finite subgroup) of length \(2k\) that begin and end at 0.

1.5 The Temperley-Lieb algebras

Let \(S_k\) denote the symmetric group of permutations on \(\{1, 2, \ldots, k\}\), and let \(\sigma \in S_k\) act on a simple tensor by place permutation as follows:
\[
\sigma \cdot (v_{r_1} \otimes v_{r_2} \otimes \cdots \otimes v_{r_k}) = v_{\sigma(r_1)} \otimes v_{\sigma(r_2)} \otimes \cdots \otimes v_{\sigma(r_k)}.
\]
It is well known, and easy to verify, that under this action \(S_k\) commutes with \(SU_2\) on \(V^\otimes k\). Thus, there is a representation \(\Phi_k : CS_k \rightarrow \text{End}_{SU_2}(V^\otimes k)\); however, this map is injective only for \(k \leq 2\).

For \(1 \leq i \leq k - 1\), let \(s_i = (i, i + 1) \in S_k\) be the simple transposition that exchanges \(i\) and \(i + 1\), and set
\[
e_i = 1 - s_i.
\]
Then \(e_i\) acts on tensor space as
\[
e_i = \frac{1}{2} \sum_{i \leq j \leq k} e_{i+1} \otimes e_{j+1},
\]
where \(1\) is the \(2 \times 2\) identity matrix, which we identify with the identity map \(\text{id}_V\) of \(V\), and \(e : V \otimes V \rightarrow V \otimes V\) acts in tensor positions \(i\) and \(i + 1\) by
\[
e(v_i \otimes v_j) = v_i \otimes v_j - v_j \otimes v_i, \quad i,j \in \{-1, 1\}.
\]
For any \(G \subseteq SU_2\), the vector space \(V^\otimes 2 = V \otimes V\) decomposes into \(G\)-modules as
\[
V^\otimes 2 = A(V^\otimes 2) \oplus S(V^\otimes 2),
\]
where \(A(V^\otimes 2) = \text{span}_C\{v_{-1} \otimes v_1 - v_1 \otimes v_{-1}\}\) are the antisymmetric tensors and \(S(V^\otimes 2) = \text{span}_C\{v_{-1} \otimes v_{-1}, v_{-1} \otimes v_1 + v_1 \otimes v_{-1}, v_1 \otimes v_1\}\) are the symmetric tensors. The operator \(e : V^\otimes 2 \rightarrow V^\otimes 2\) projects onto the \(G\)-submodule \(A(V^\otimes 2)\) and \(\frac{1}{2}e\) is the corresponding idempotent.

The image \(\text{im}(\Phi_k)\) of the representation \(\Phi_k : CS_k \rightarrow \text{End}_{SU_2}(V^\otimes k)\) can be identified with the Temperley-Lieb algebra \(TL_k(2)\). Recall that the Temperley-Lieb algebra \(TL_k(2)\) is the unital associative algebra with generators \(e_1, \ldots, e_{k-1}\) and relations
\[
\begin{align*}
(TL1) \quad e_i^2 &= 2e_i, & 1 \leq i \leq k - 1, \\
(TL2) \quad e_i e_{i \pm 1} e_i &= e_i, & 1 \leq i \leq k - 1, \\
(TL3) \quad e_i e_j &= e_j e_i, & |i - j| > 1,
\end{align*}
\]
(see [TL] and [GHJ]). Since the generator \(e_1\) in \(TL_k(2)\) is identified with the map in (1.19), we are using the same notation for them. If \(\Psi_k : SU_2 \rightarrow \text{End}(V^\otimes k)\) is the tensor-product representation, then \(SU_2\) and \(TL_k(2)\) generate full centralizers of each other in \(\text{End}(V^\otimes k)\), so that
\[
\text{im}(\Phi_k) \cong \text{im}(\Psi_k) = \text{End}_{SU_2}(V^\otimes k) \quad \text{and} \quad \text{im}(\Psi_k) = \text{End}_{TL_k(2)}(V^\otimes k).
\]
Since $\text{TL}_k(2) \cong \text{Z}_k(\text{SU}_2) = \text{End}_{\text{SU}_2}(V^{\otimes k})$, the set

$$\Lambda_k(\text{SU}_2) = \begin{cases} \{0, 2, \ldots, k\}, & \text{if } k \text{ is even}, \\ \{1, 3, \ldots, k\}, & \text{if } k \text{ is odd} \end{cases}$$

also indexes the irreducible $\text{TL}_k(2)$-modules. The number of walks of length k from 0 to $k - 2\ell \in \Lambda_k(\text{SU}_2)$ on $R_V(\text{SU}_2)$ is equal to the number of walks from 0 to $k - 2\ell$ on the natural numbers \mathbb{N} and is known to be (see [WB, p. 545], [Jo, Sec. 5])

$$\left\{ k \over \ell \right\} := \binom{k}{\ell} - \binom{k}{\ell - 1}.$$

For each $k - 2\ell \in \Lambda_k(\text{SU}_2)$, where $\ell = 0, 1, \ldots, \lfloor k/2 \rfloor$, let $\text{TL}_k^{(k-2\ell)} = \text{Z}_k^{(k-2\ell)}$ be the irreducible $\text{TL}_k(2)$ module labeled by $k - 2\ell$. Then $\text{TL}_k^{(k-2\ell)}$ has dimension $\left\{ k \over \ell \right\}$, and these modules are constructed explicitly in [WB]. Moreover,

$$V^{\otimes k} \cong \bigoplus_{k-2\ell \in \Lambda_k(\text{SU}_2)} \binom{k}{\ell} V(k - 2\ell),$$

$$\cong \bigoplus_{k-2\ell \in \Lambda_k(\text{SU}_2)} (k - 2\ell + 1)\text{TL}_k^{(k-2\ell)},$$

$$\cong \bigoplus_{k-2\ell \in \Lambda_k(\text{SU}_2)} \left(V(k - 2\ell) \otimes \text{TL}_k^{(k-2\ell)}\right),$$

as an SU_2-module, as a $\text{TL}_k(2)$-module, as an $(\text{SU}_2, \text{TL}_k(2))$-bimodule.

The dimension of $\text{TL}_k(2)$ is given by the Catalan number $c_k = \frac{1}{k+1} \binom{2k}{k}$, as can be seen in the right-hand column of the Bratteli diagram for SU_2 in Figure [1].

1.6 The Jones Basic Construction

Let G be a subgroup of SU_2 such that $G \neq \{1\}, \{-1,1\}$. Any transformation that commutes with SU_2 on $V^{\otimes k}$ also commutes with G. Thus, we have the reverse inclusion of centralizers $\text{TL}_k(2) = \text{End}_{\text{SU}_2}(V^{\otimes k}) \subseteq \text{End}_G(V^{\otimes k}) = \text{Z}_k(G)$ and identify the subalgebra of $\text{End}_G(V^{\otimes k})$ generated by the e_i in (1.19) with $\text{TL}_k(2)$. In this section, we use the Jones basic construction to find additional generators for the centralizer algebra $\text{Z}_k = \text{Z}_k(\text{SU}_2) = \text{End}_G(V^{\otimes k})$ for each k. The construction uses the natural embedding of Z_k into Z_{k+1} given by $a \mapsto a \otimes 1$, which holds for any $k \geq 1$.

In what follows, if $q = (q_1, \ldots, q_k) \in \{-1, 1\}^k$ and $r = (r_1, \ldots, r_{k+\ell}) \in \{-1, 1\}^{k+\ell}$ for some $k, \ell \geq 1$, then $[q,r] = (q_1, \ldots, q_k, r_1, \ldots, r_{k+\ell}) \in \{-1, 1\}^{k+\ell}$ is the concatenation of the two tuples. In particular, if $t \in \{-1, 1\}$, then $[q,t] = (q_1, \ldots, q_k, t)$.

Now if $a \in \text{End}(V^{\otimes k})$, say $a = \sum_{s \in \{-1,1\}^k} a^r_s E_{r,s}$, where $E_{r,s}$ is the standard matrix unit, then under the embedding $a \mapsto a \otimes 1$,

$$a^{[r,r_{k+1}]}_{[s,s_{k+1}]} = (a \otimes 1)^{[r,r_{k+1}]}_{[s,s_{k+1}]} = \delta_{r_{k+1},s_{k+1}} a^{r}_{s},$$

where $r_{k+1}, s_{k+1} \in \{-1, 1\}$.

Note in this section we are writing a^r_s rather than $a_{r,s}$ to simplify the notation.

Define a map $\varepsilon_k : \text{End}(V^{\otimes k}) \to \text{End}(V^{\otimes (k-1)})$, $\varepsilon_k(a) = \sum_{p,q \in \{-1,1\}^{k-1}} \varepsilon_k(a)^p_q E_{p,q}$, called the conditional expectation, such that

$$\varepsilon_k(a)^p_q = \frac{1}{2} \left(a_{[p,-1]}^q + a_{[q,1]}^p \right)$$

for all $p, q \in \{-1, 1\}^{k-1}$ and all $a \in \text{End}(V^{\otimes k})$.

8
Proposition 1.26. Assume $k \geq 1$.

(a) If $a \in \text{End}(V^{\otimes k}) \subseteq \text{End}(V^{\otimes (k+1)})$, then $e_k a e_k = 2\varepsilon_k(a) \otimes e = 2\varepsilon_k(a)e_k$.

(b) If $a \in \mathbb{Z}_k$, then $\varepsilon_k(a) \in \mathbb{Z}_{k-1}$, so that $\varepsilon_k : \mathbb{Z}_k \to \mathbb{Z}_{k-1}$.

(c) $\varepsilon_k : \mathbb{Z}_k \to \mathbb{Z}_{k-1}$ is a $(\mathbb{Z}_{k-1}, \mathbb{Z}_{k-1})$-bimodule map; that is, $\varepsilon_k(a_1 b a_2) = a_1 \varepsilon_k(b)a_2$ for all $a_1, a_2 \in \mathbb{Z}_{k-1} \subseteq \mathbb{Z}_k$, $b \in \mathbb{Z}_k$. In particular, $\varepsilon_k(a) = a$ for all $a \in \mathbb{Z}_{k-1}$.

(d) Let tr_k denote the usual (nondegenerate) trace on $\text{End}(V^{\otimes k})$. Then for all $a \in \mathbb{Z}_k$ and $b \in \mathbb{Z}_{k-1}$, we have $tr_k(ab) = tr_k(\varepsilon_k(a)b)$.

Proof. (a) It suffices to show that these expressions have the same action on a simple tensor v_r where $r = (r_1, \ldots, r_k, r_{k+1}) \in \{-1, 1\}^{k+1}$. If $r_k = r_{k+1}$, then both $e_k a e_k$ and $2\varepsilon_k(a) \otimes e$ act as 0 on v_r. So we suppose that $(r_k, r_{k+1}) = (1, -1)$, and let $p = (r_1, \ldots, r_{k-1})$. Now

\[
(e_k a e_k)v_r = e_k a (v_p \otimes v_{-1} \otimes v_1 - v_p \otimes v_1 \otimes v_{-1})
\]

\[
= e_k \sum_{a \in \{-1, 1\}} a^{[p, -1]} a^{[p, 1]} v_q \otimes v_1 - e_k \sum_{a \in \{-1, 1\}} a^{[p, 1]} v_q \otimes v_{-1}
\]

\[
= \sum_{n \in \{-1, 1\}^{k-1}} a^{[n, -1]} (v_n \otimes v_{-1} \otimes v_1 - v_n \otimes v_1 \otimes v_{-1})
\]

Thus, the coefficient of $v_n \otimes v_{-1} \otimes v_1$ is $a^{[n, -1]} + a^{[n, 1]}$, and the coefficient of $v_n \otimes v_1 \otimes v_{-1}$ is the negative of that expression. These are exactly the coefficients that we get when $2\varepsilon_k(a) \otimes e$ acts on v_r. The proof when $(r_k, r_{k+1}) = (1, 1)$ is completely analogous.

(b) When $a \in \mathbb{Z}_k \subseteq \mathbb{Z}_{k+1}$, then $e_k a e_k \in \mathbb{Z}_{k+1}$, so from part (a) it follows that $\varepsilon_k(a) \otimes e \in \mathbb{Z}_{k+1}$. Therefore, if $g \in G$, then $\varepsilon_k(a) \otimes e \in \mathbb{Z}_{k+1}$ commutes with $g^{\otimes (k+1)} = g^{\otimes (k-1)} \otimes g^{\otimes 2}$ on $V^{(k-1)} \otimes V^{\otimes 2}$. Since these actions occur independently on the first $k - 1$ and last 2 tensor slots, $\varepsilon_k(a)$ commutes with $g^{\otimes (k-1)}$ for all $g \in G$. Hence $\varepsilon_k(a) \in \mathbb{Z}_{k-1}$.

(c) Let $a_1, a_2 \in \mathbb{Z}_{k-1}$ and $b \in \mathbb{Z}_k$. Then using [1.24] and [1.25] we have for $p, q \in \{-1, 1\}^{k-1}$,

\[
\varepsilon_k(a_1 b a_2)^p_q = \frac{1}{2} \sum_{t \in \{-1, 1\}} (a_1 b a_2)^p_{[t, t]} = \frac{1}{2} \sum_{t \in \{-1, 1\}} \sum_{m, n \in \{-1, 1\}} (a_1)^p_{[n, t]} b^{[m, t]} (a_2)^m_{[q, t]}
\]

\[
= \frac{1}{2} \sum_{t \in \{-1, 1\}} \sum_{m, n \in \{-1, 1\}} (a_1)^p_{[n, t]} b^{[m, t]} (a_2)^m_{[q, t]}
\]

\[
= \sum_{m, n \in \{-1, 1\}} (a_1)^p_{[n, t]} \left(\frac{1}{2} \sum_{t \in \{-1, 1\}} b^{[m, t]} \right) (a_2)^m_{[q, t]}
\]

\[
= (a_1 \varepsilon_k(b) a_2)^p_q.
\]
(d) Let \(a \in Z_k\) and \(b \in Z_{k-1} \subseteq Z_k\). Then applying (1.24) gives
\[
\text{tr}_k(ab) = \sum_{r \in \{-1,1\}} \sum_{s, t \in \{-1,1\}} a'^r_s b'^t_s = \sum_{r' \in \{-1,1\}^{k-1}} \sum_{s' \in \{-1,1\}^{k-1}} \sum_{s, t \in \{-1,1\}} a'^r_s \delta_{r, s} b'^t_s
\]
\[
= \sum_{r' \in \{-1,1\}^{k-1}} \sum_{s' \in \{-1,1\}^{k-1}} 2 \varepsilon_k(a)'^r_s b'^t_s
\]
\[
= \sum_{r = [r', r_k]} \sum_{s \in \{-1,1\}} \delta_{r, s} \varepsilon_k(a)'^r_s b'^s_t
\]
\[
= \text{tr}_k(\varepsilon_k(ab)).
\]

Relative to the inner product \(\langle , \rangle : Z_k \times Z_k \to \mathbb{C}\) defined by \(\langle a, b \rangle = \text{tr}_k(ab)\), for all \(a, b \in Z_k\), the conditional expectation \(\varepsilon_k\) is the orthogonal projection \(\varepsilon_k : Z_k \to Z_{k-1}\) with respect to \(\langle , \rangle\) since
\[
\langle a - \varepsilon_k(a), b \rangle = \text{tr}_k(ab) - \text{tr}_k(\varepsilon_k(ab)) = 0
\]
by Proposition 1.26(d). Its values are uniquely determined by the nondegeneracy of the trace.

Proposition 1.26(a) tells us that \(Z_k e_k Z_k\) is a subalgebra of \(Z_{k+1}\). Indeed, for \(a_1, a_2, a'_1, a'_2 \in Z_k\), we have
\[
(a_1 e_k a_2)(a'_1 e_k a'_2) = a_1 e_k (a_2 a'_1) e_k a'_2 = 2 a_1 \varepsilon_k(a_2 a'_1) e_k a'_2 \in Z_k e_k Z_k.
\]

Part (b) of the next result says that in fact \(Z_k e_k Z_k\) is an ideal of \(Z_{k+1}\).

Proposition 1.27. For all \(k \geq 0\),

(a) For \(a \in \text{End}(V^\otimes(k+1))\) there is a unique \(b \in \text{End}(V^\otimes k)\) so \(a e_k = (b \otimes 1) e_k\), and for all \(r, s \in \{-1,1\}^k\),
\[
b'^r_s = \frac{1}{2} \left(a'^r_{[r, -s]} - a'^r_{[s, -r]} \right),
\]
where \(r' = (r_1, \ldots, r_{k-1})\), \(r = [r', r_k]\), \(s' = (s_1, \ldots, s_{k-1})\), and \(s = [s', s_k]\). If \(a \in Z_{k+1}\), then \(b \in Z_k\).

(b) \(Z_k e_k Z_k = Z_{k+1} e_k Z_{k+1}\) is an ideal of \(Z_{k+1}\).

(c) The map \(Z_k \to Z_k e_k \subseteq Z_{k+1}\) given by \(a \mapsto a e_k\) is injective.

Proof. (a) First note that for all \(p, q \in \{-1,1\}^{k+1}\),
\[
(e_k)^p_q = \frac{1}{4} \left(\prod_{j=1}^{k-1} \delta_{p_j, q_j} \right) (p_{k+1} - p_k)(q_{k+1} - q_k),
\]
Now assume \(a \in \text{End}(V^\otimes(k+1))\), \(b \in \text{End}(V^\otimes k)\) and \(n, q \in \{-1,1\}^{k+1}\), and let \(q'' = (q_1, \ldots, q_{k-1})\). Then
\[
(ae_k)_q^n = \sum_{p \in \{-1,1\}^{k+1}} a_p^n (e_k)_q^n \\
= \frac{1}{4} \sum_{p \in \{-1,1\}^{k+1}} a_p^n \left(\prod_{j=1}^{k-1} \delta_{p_j,q_j} \right) (pk+1 - pk)(qk+1 - qk), \\
= \frac{1}{4} \sum_{p_k,p_{k+1} \in \{-1,1\}} a^n_{[q',pk,p_{k+1}]}(pk+1 - pk)(qk+1 - qk), \\
= \frac{1}{2}(qk+1 - qk) \left(a^n_{[q',-1,1]} - a^n_{[q',1,-1]} \right), \\
\]
while
\[
((b \otimes 1)e_k)_q^n = \sum_{p \in \{-1,1\}^{k+1}} (b \otimes 1)_p^n (e_k)_q^n \\
= \frac{1}{4} \sum_{p \in \{-1,1\}^{k+1}} (b \otimes 1)_p^n \left(\prod_{j=1}^{k-1} \delta_{p_j,q_j} \right) (pk+1 - pk)(qk+1 - qk) \\
= \frac{1}{4}(qk+1 - qk) \sum_{p_k \in \{-1,1\}} (b \otimes 1)_{p_k'}(nk+1 - p_k) \text{ where } n' = (n_1, \ldots, n_k) \\
= \frac{1}{2}(qk+1 - qk) \left(b^{n'}_{[q',-1]}(nk+1 + 1) + b^{n'}_{[q',1]}(nk+1 - 1) \right).
\]

Therefore \(ae_k = (b \otimes 1)e_k\) if and only if \(b^{n'}_{q'} = \frac{1}{2} \left(a^{n'-gq}_{[q'-gq,-qk]} - a^{n'-gq}_{[q'-gq,-qk]} \right)\) for all \(n,q \in \{-1,1\}^k\). Setting \(r = n'\) and \(s = (s_1, \ldots, s_k) = q'\) gives the expression in (1.28). Now assume \(a \in Z_{k+1}\) and \(b\) is the unique element in \(\text{End}(V^\otimes k)\) so that \(ae_k = (b \otimes 1)e_k\). Then \(ae_k \in Z_{k+1}\) so that \(ae_k = gaekg^{-1}\) for all \(g \in G\). It follows that \((b \otimes 1)e_k = g(b \otimes 1)e_kg^{-1} = g(b \otimes 1)g^{-1}e_k = (gbg^{-1} \otimes 1)e_k\). The uniqueness of \(b\) forces \(gbg^{-1} = b\) to hold for all \(g \in G\), so that \(b \in Z_k\) as claimed in (a).

(b) Part (a) implies that \(Z_{k+1}e_k = Z_k e_k\) (where \(Z_k\) is identified with \(Z_k \otimes 1\)). A symmetric argument gives \(e_kZ_{k+1} = e_kZ_k\), and it follows that \(Z_k e_k Z_{k+1} = Z_{k+1} e_k Z_{k+1}\) is an ideal of \(Z_{k+1}\). Part (c) is a consequence of the uniqueness of \(b\) in the above proof.

The Jones basic construction for \(Z_k \subseteq Z_{k+1}\) is based on the ideal \(Z_k e_k Z_k\) of \(Z_{k+1}\) and the fact that \(\Lambda_{k-1}(G) \subseteq \Lambda_{k+1}(G)\), and it involves the following two key ideas.

(1) When decomposing \(V^\otimes (k+1)\) let
\[
V^\otimes_{\text{old}}(k+1) = \bigoplus_{\lambda \in \Lambda_{k-1}(G)} m^\lambda_{k+1} G^\lambda \tag{1.30}
\]
\[
V^\otimes_{\text{new}}(k+1) = \bigoplus_{\lambda \in \Lambda_{k+1}(G) \setminus \Lambda_{k-1}(G)} m^\lambda_{k+1} G^\lambda. \tag{1.31}
\]

Thus, \(V^\otimes (k+1) = V^\otimes_{\text{old}}(k+1) \oplus V^\otimes_{\text{new}}(k+1)\). Using the fact that \(\frac{1}{2}e_k\) corresponds to the projection onto the trivial \(G\)-module in the last two tensor slots of \(V^\otimes (k+1)\), Wenzl ([W3, Prop. 4.10], [W4, Prop. 2.2]) proves that \(Z_k e_k Z_k \cong \text{End}_G(V^\otimes_{\text{old}}(k+1))\). Applying the decomposition \(\text{End}_G(V^\otimes_{\text{old}}(k+1)) \cong \text{End}_G(V^\otimes_{\text{old}}(k+1)) \oplus \text{End}_G(V^\otimes_{\text{new}}(k+1))\) then gives
\[
Z_{k+1} \cong Z_k e_k Z_k \oplus \text{End}_G(V^\otimes_{\text{new}}(k+1)). \tag{1.32}
\]
(2) There is an algebra isomorphism \(\mathbb{Z}_{k-1} \cong e_k \mathbb{Z}_k e_k \) via the map that sends \(a \in \mathbb{Z}_{k-1} \) to \(e_k a e_k = 2a e_k = 2e_k a \). Viewing \(Z_k e_k \) as a module for \(Z_k e_k Z_k \) and for \(Z_{k-1} \equiv e_k Z_k e_k \) by multiplication on the left and right, respectively, we have that these actions commute and centralize one another:

\[
Z_k e_k Z_k \cong \text{End}_{\mathbb{Z}_{k-1}}(Z_k e_k) \quad \text{and} \quad Z_{k-1} \cong \text{End}_{\mathbb{Z}_k}(Z_k e_k).
\]

Double-centralizer theory (e.g., [CR Secs. 3B and 68]) then implies that the simple summands of the semisimple algebras \(Z_k e_k Z_k \) and \(Z_{k-1} \) (hence their irreducible modules) can be indexed by the same set \(\Lambda_{k-1}(G) \).

As before, let \(Z_k^\lambda, \lambda \in \Lambda_k(G) \), denote the irreducible \(Z_k \)-modules. By restriction, \(Z_k^\lambda \) is a \(Z_{k-1} \)-module and

\[
\text{Res}_{Z_{k-1}}^Z(Z_k^\lambda) = \bigoplus_{\mu \in \Lambda_{k-1}} \Theta_{\lambda,\mu} Z_{k-1}^\mu,
\]

where \(\Theta_{\lambda,\mu} \) is the multiplicity of \(Z_{k-1}^\mu \) in \(Z_k^\lambda \). The \(|\Lambda_k| \times |\Lambda_{k-1}| \) matrix \(\Theta \) whose \((\lambda,\mu)\)-entry is \(\Theta_{\lambda,\mu} \) is the inclusion matrix for \(Z_{k-1} \subseteq Z_k \). For all of the groups \(G \) in this paper, the restriction is “multiplicity free” meaning that each \(\Theta_{\lambda,\mu} \) is either 0 or 1.

General facts from double-centralizer theory imply that the inclusion matrix for \(Z_{k-1} \subseteq Z_k \) is the transpose of the inclusion matrix for \(\text{End}_{Z_k}(Z_k e_k) \subseteq \text{End}_{Z_{k-1}}(Z_k e_k) \), which implies the following:

In the Bratteli diagram for the tower of algebras \(Z_k \), the edges between levels \(k \) and \(k+1 \) corresponding to \(Z_k e_k Z_k \subseteq Z_{k+1} \) are the reflection over level \(k \) of the edges between \(k-1 \) and \(k \) corresponding to \(Z_{k-1} \subseteq Z_k \).

In Section 4.2 we have highlighted the edges of the Bratteli diagrams that are not reflections over level \(k \) and left unhighlighted the edges corresponding to the Jones basic construction.

The highlighted edges give a copy of the representation graph \(R_V(G) \) (i.e. the Dynkin diagram) embedded in the Bratteli diagram.

This will be discussed further in Examples 1.46

1.7 Projection mappings

The Jones-Wenzl idempotents (see [W1], [Jo Sec. 3], [FK]) in \(\text{TL}_k(2) \) are defined recursively by setting \(f_1 = 1 \) and letting

\[
f_n = f_{n-1} - \frac{n-1}{n} f_{n-1} e_{n-1} f_{n-1}, \quad 1 < n \leq k.
\]

These idempotents satisfy the following properties (see [W1], [FK], [CJ] for proofs),

\[
\begin{align*}
\text{(JW1)} & \quad f_n^2 = f_n, & 1 \leq n \leq k - 1, \\
\text{(JW2)} & \quad e_i f_n = f_n e_i = 0, & 1 \leq i < n \leq k, \\
\text{(JW3)} & \quad e_i f_n = f_n e_i, & 1 \leq n < i \leq k - 1, \\
\text{(JW4)} & \quad e_n f_n e_n = \frac{n+1}{n} f_{n-1} e_n, & 1 \leq n \leq k - 1, \\
\text{(JW5)} & \quad 1 - f_n \in (e_1, \ldots, e_{n-1}), \\
\text{(JW6)} & \quad f_m f_n = f_n f_m, & 1 \leq m, n \leq k,
\end{align*}
\]

where \((e_1, \ldots, e_{n-1}) \) stands for the subalgebra of \(\text{TL}_k(2) \) generated by \(e_1, \ldots, e_{n-1} \). An expression for \(f_n \) in the \(\text{TL}_k(2) \) basis of words in the generators \(e_1, \ldots, e_{k-1} \) can be found in [FK, Mo].
The simple SU_2-module $V(k)$ appears in $V^{\otimes k}$ with multiplicity 1, and it is does not appear as a simple summand of $V^{\otimes \ell}$ for any $\ell < k$. To locate $V(k)$ inside $V^{\otimes k}$, let $r = (r_1, \ldots, r_k) \in \{-1, 1\}^k$ for some $k \geq 1$, and set

$$|r| = |\{ r_i \mid r_i = -1 \}|.$$ \hfill (1.35)

Then the totally symmetric tensors $S(V^{\otimes k})$ form the $(k + 1)$-dimensional subspace of $V^{\otimes k}$ spanned by the vectors w_0, w_1, \ldots, w_k, where

$$w_t = \sum_{|r| = t} v_r, \quad 0 \leq t \leq k.$$ \hfill (1.36)

It is well known (see for example [11], Sec. 11.1]) that $S(V^{\otimes k}) \cong V(k)$ as an SU_2-module, and that $f_k(V^{\otimes k}) = S(V^{\otimes k})$ ([13], Prop. 1.3, Cor. 1.4]). In particular,

$$S(V^{\otimes 2}) = \text{span}_C \{ w_0 = v_1 \otimes v_1, w_1 = v_{-1} \otimes v_1 + v_1 \otimes v_{-1}, w_2 = v_{-1} \otimes v_{-1} \} \cong V(2).$$

Observe that $f_2 = 1 - \frac{1}{2}e_1$ and $f_2(w_t) = w_t$ for $t = 0, 1, 2$.

1.8 Projections related to branch nodes

A branch node in the representation graph $\mathcal{R}_V(G)$ is any vertex of degree greater than 2. Let $br(G)$ denote the branch node in $\mathcal{R}_V(G)$, and in the case of $D_n (n > 2)$, which has 2 branch nodes, set $br(D_n) = 1$. In the special case of $\mathcal{R}_V(C_n)$ for $n \leq \infty$, we consider the affine node itself to be the branch node, so that $br(C_n) = 0$. When $G = D_n, T, O, I, C_\infty$, or D_∞, we say that the diameter of $\mathcal{R}_V(G)$, denoted by $di(G)$, is the maximum distance between any vertex $\lambda \in \Lambda(G)$ and $0 \in \Lambda(G)$.

In particular, $di(G) = \infty$ for $G = C_\infty$ or D_∞. For $G = C_n$, we let $di(G) = \tilde{n}$, where \tilde{n} is as in (1.37).

<table>
<thead>
<tr>
<th>G</th>
<th>SU_2</th>
<th>C_n</th>
<th>D_n</th>
<th>T</th>
<th>O</th>
<th>I</th>
<th>C_∞</th>
<th>D_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$di(G)$</td>
<td>∞</td>
<td>\tilde{n}</td>
<td>n</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$br(G)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

where $\tilde{n} = \begin{cases} n/2, & \text{if } n \text{ is even}, \\ n, & \text{if } n \text{ is odd}. \end{cases}$ (1.37)

In this section, we develop a recursive procedure for constructing the idempotents f_ν that project onto the irreducible G-summands G^ν of $V^{\otimes k}_{\text{new}}$. Assume $k \leq \ell$, where $\ell = br(G)$. Then $V^{\otimes k}_{\text{new}} = G^{(k)} = V(k)$. In this case, the projection of $V^{\otimes k}$ onto $G^{(k)}$ is given by $f_k := f_k$, where f_k is the Jones-Wenzl idempotent. The irreducible SU_2-module $V(\ell + 1) is reducible as a G-module. Suppose $\deg(\ell)$ is the degree of the branch node indexed by ℓ in the representation graph of G, so that $\deg(\ell) = 3$, except when $G = D_2$ where $\deg(\ell) = 4$. We assume the decomposition into irreducible G-modules is given by $V^{\otimes (\ell+1)}_{\text{new}} = V(\ell + 1) = \bigoplus_{j=1}^{\deg(\ell)-1} G^{\beta_j}$. For example, when $G = O$, then $\ell = 3$ and $V^{\otimes 4}_{\text{new}} = V(4) = G^{(4')} \oplus G^{(4^{-})}$; and when $G = D_2$, then $\ell = 1$ and $V^{\otimes 2}_{\text{new}} = V(2) = G^{(0')} \oplus G^{(2')} \oplus G^{(2^*)}$, where the labels of the irreducible G-modules are as in Section 4.1.

Let

$$f_{\ell+1} = \sum_{j=1}^{\deg(\ell)-1} f_{\beta_j}$$ \hfill (1.38)

be the decomposition of the Jones-Wenzl idempotent $f_{\ell+1}$ into minimal orthogonal idempotents that commute with G and project $V^{\otimes (\ell+1)}_{\text{new}}$ onto the irreducible G-summands G^{β_j}. For finite subgroups G, these idempotents can be constructed using the corresponding irreducible characters χ_{β_j} as

$$f_{\beta_j} = \frac{\dim G^{\beta_j}}{|G|} \sum_{g \in G} \chi_{\beta_j}(g) g^{\otimes (\ell+1)}.$$ \hfill (1.39)
where $g^\otimes (t+1)$ is the matrix of g on $V^\otimes (t+1)$ and $\overline{\cdot}$ denotes complex conjugate. (See for example, [FH (2.32)].) We will not need these explicit expressions in this paper.

Lemma 1.40. Let $Z_k = Z_k(G)$ for all k. Let $\lambda \in \Lambda_k(G)$, and assume $f_\lambda \in Z_k$ projects $V^\otimes k$ onto the irreducible G-module G^λ in $V^\otimes k$. Let $d^\lambda = \dim G^\lambda$, and suppose $G^\lambda \otimes V = \bigoplus_i G^{\mu_i}$. Let f_{μ_i} be the orthogonal idempotents in Z_{k+1} that project $V^\otimes (k+1)$ onto the irreducible G-modules G^{μ_i}, and assume $d^{\mu_i} = \dim G^{\mu_i}$. Then the following hold: for all $\mu_i \in \Lambda_{k+1}(G) \setminus \Lambda_{k-1}(G)$:

(i) $f_\lambda f_{\mu_i} = f_{\mu_i} = f_{\mu_i} f_\lambda$;

(ii) f_{μ_i} commutes with e_j for $j > k + 1$;

(iii) $\varepsilon_{k+1}(f_{\mu_i}) = \frac{d^{\mu_i}}{d^\lambda} f_\lambda$; and

(iv) $e_{k+1} f_{\mu_i} e_{k+1} = 2 \varepsilon_{k+1}(f_{\mu_i}) e_{k+1} = \frac{d^{\mu_i}}{d^\lambda} f_\lambda e_{k+1}$.

Proof. (i) Now $f_{\mu_i} (V^\otimes (k+1)) = f_{\mu_i} (G^\lambda \otimes V) = G^{\mu_i} = f_{\mu_i} (V^\otimes (k+1))$, so $f_{\mu_i} f_\lambda = f_{\mu_i}$. For the product in the other order, we have $f_\lambda f_{\mu_i} (V^\otimes (k+1)) = f_\lambda (G^{\mu_i})$. Since G^{μ_i} is contained in $G^\lambda \otimes V$ and f_λ acts as the identity on that space, $f_\lambda (G^{\mu_i}) = G^{\mu_i}$, which implies the result.

(ii) This is clear, because $f_{\mu_i} \in Z_{k+1}$, and Z_{k+1} commutes with e_j for $j > k + 1$.

(iii) From (i) and part (c) of Proposition 1.26, we have for each i,

$$f_\lambda \varepsilon_{k+1}(f_{\mu_i}) = \varepsilon_{k+1}(f_\lambda f_{\mu_i}) = \varepsilon_{k+1}(f_{\mu_i}) = \varepsilon_{k+1}(f_{\mu_i} f_\lambda) = \varepsilon_{k+1}(f_{\mu_i}) f_\lambda. \quad (1.41)$$

Suppose $W = V^\otimes k$, and let $W = W_0 \oplus W_1$ be the eigenspace decomposition of f_λ on W so that $f_\lambda w = jw$ for $w \in W_j$, $j = 0, 1$. Since f_λ and $\varepsilon_{k+1}(f_{\mu_i})$ commute by (1.41), $\varepsilon_{k+1}(f_{\mu_i})$ maps W_j into itself for $j = 0, 1$. Now if $w \in W_0$, then $\varepsilon_{k+1}(f_{\mu_i}) w = \varepsilon_{k+1}(f_{\mu_i}) f_\lambda w = 0$, so that $\varepsilon_{k+1}(f_{\mu_i})$ is 0 on W_0. Since $\varepsilon_{k+1}(f_{\mu_i}) \in Z_k$, we have $\varepsilon_{k+1}(f_{\mu_i}) \in \text{End}_G(W_1) = \text{Id}_{W_1} = Gf_\lambda$ by Schur’s lemma, as $W_1 = G^\lambda$, an irreducible G-module. Therefore, there exists $\xi_i \in C$ such that $\varepsilon_{k+1}(f_{\mu_i}) = \xi_i f_\lambda$ on W_1. But since these transformations agree on W_0 (as both equal 0 on W_0), we have $\varepsilon_{k+1}(f_{\mu_i}) = \xi_i f_\lambda$ on $V^\otimes k$. Taking traces and using (d) of Proposition 1.26 gives

$$d^{\mu_i} = \text{tr}_{k+1}(f_{\mu_i}) = \text{tr}_{k+1}(\varepsilon_{k+1}(f_{\mu_i})) = \xi_i \text{tr}_{k+1}(f_\lambda) = 2 \xi_i \text{tr}(f_\lambda) = 2 \xi_i d^\lambda.$$

Therefore $\xi_i = \frac{d^{\mu_i}}{2d^\lambda}$ so that $\varepsilon_{k+1}(f_{\mu_i}) = \frac{d^{\mu_i}}{2d^\lambda} f_\lambda$, as asserted in (iii). Part (iv) follows immediately from (iii) and Proposition 1.26 (a).
(v) \(f_\nu \) projects \(V^\otimes (k+2) \) onto \(G' \).

Proof. (i) We have

\[
f_\nu^2 = \left(f_\mu - \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu \right)^2 = f_\mu - 2 \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu + \frac{(d^\lambda)^2}{(d\mu)^2} f_\mu e_{k+1} f_\mu e_{k+1} f_\mu
\]

by (iv) of Lemma 1.40

\[
f_\mu = \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu = f_\mu
\]

By construction, \(f_\nu \in Z_{k+2} \).

Part (ii) follows easily from the definition of \(f_\nu \) and the fact that \(f_\mu \) is an idempotent.

(iii) Since \(f_\mu \in Z_{k+1} \) commutes with \(e_j \) for \(j > k + 1 \), and \(e_{k+1} \) commutes with \(e_j \) for \(j > k + 2 \), \(f_\nu \) commutes with \(e_j \) for \(j > k + 2 \).

For (iv) we compute

\[
e_{k+2} f_\nu e_{k+2} = e_{k+2} \left(f_\mu - \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu \right) e_{k+2}
\]

using (ii) of Lemma 1.40

\[
= e_{k+2} f_\mu - \frac{d^\lambda}{d\mu} f_\mu e_{k+2} e_{k+1} e_{k+2} f_\mu
\]

\[
= 2e_{k+2} f_\mu - \frac{d^\lambda}{d\mu} f_\mu e_{k+2} f_\mu
\]

This equation along with Proposition 1.26 (a) implies that \(\varepsilon_{k+2}(f_\mu) = \frac{d^\nu}{d\nu} f_\mu \in Z_{k+1} \).

(v) From (1.32) with \(k + 2 \) instead of \(k + 1 \), we have \(Z_{k+2} = Z_{k+1} e_{k+1} Z_{k+1} \) \(\oplus \) \(\text{End}_G(V_\text{old}^\otimes (k+2)) \).

Now

\[
f_\mu \otimes 1 = f_\mu = \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu + f_\nu \in Z_{k+2},
\]

and the idempotent \(f_\mu \otimes 1 \) projects \(V^\otimes (k+2) \) onto \(G^\mu \otimes V = G^\lambda \oplus G'^{\nu} \). Observe that \(p := \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu \in Z_{k+1} e_{k+1} Z_{k+1} \), and

\[
p^2 = \left(\frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu \right)^2 = \frac{(d^\lambda)^2}{(d\mu)^2} f_\mu e_{k+1} f_\mu e_{k+1} f_\mu = \frac{(d^\lambda)^2}{(d\mu)^2} f_\mu e_{k+1} f_\mu e_{k+1} f_\mu = p
\]

using Lemma 1.40 (iv), so we can conclude that \(p \) is an idempotent once we know it is nonzero. But if \(p = 0 \), then

\[
0 = 2e_{k+1} f_\mu e_{k+1} f_\mu e_{k+1} (e_{k+1} f_\mu e_{k+1})^2 = \left(\frac{d^\mu}{d\lambda} f_{\lambda} e_{k+1} \right)^2 = 2 \left(\frac{d^\mu}{d\lambda} f_{\lambda} e_{k+1} \right)^2
\]

by Lemma 1.40 (iv). Since \(f_{\lambda} \) and \(e_{k+1} \) act on different tensor slots and both are nonzero, we have reached a contradiction. Thus, \(p \) is an idempotent. Moreover, \(f_\mu p = (f_\mu - p)p = 0 \). Therefore, (1.43) gives the decomposition of \(f_\mu \otimes 1 \) into orthogonal idempotents, with the first idempotent \(p = \frac{d^\lambda}{d\mu} f_\mu e_{k+1} f_\mu \) in \(Z_{k+1} e_{k+1} Z_{k+1} = \text{End}_G(V_\text{old}^\otimes (k+2)) \). Then \(G^\mu \otimes V = p (V^\otimes (k+2)) \oplus f_\nu (V^\otimes (k+2)) \) is a decomposition of \(G^\mu \otimes V = G^\lambda \oplus G'^{\nu} \) into \(G \)-submodules such that \(p (V^\otimes (k+2)) \in V_\text{old}^\otimes (k+2) \). Hence, \(p (V^\otimes (k+2)) = G^\lambda \) and \(f_\nu (V^\otimes (k+2)) = G'^{\nu} \). \(\square \)
This procedure can be applied recursively to produce the projection idempotents for all \(k \leq \text{di}(G) \) that do not come from (1.39), as illustrated in the next series of examples. Our labeling of the irreducible \(G \)-modules is as in Section 4.1.

Examples 1.44. • The \(G = T, O, I \) cases: Let \(\ell = \text{br}(G) \) (so \(\ell = 2, 3, 5 \), respectively) and set \(f_k = f_k \) for \(0 \leq k \leq \ell \), where \(f_k \) is given by (1.33). Let \(f_{(\ell+1)+} \) and \(f_{(\ell+1)-} \) be the projections onto \(G^{((\ell+1)+)} \) and \(G^{((\ell+1)-)} \), respectively, which can be constructed using (1.39). When \(G = T \), applying Proposition 1.42 with \(\lambda = (2) \), \(\nu = (3^\pm) \), and \(\nu = (4^\pm) \) produces the idempotents \(f_{(\pm 1)} = f_{(3^\pm)} - \frac{1}{2} f_{(3^\pm)} e_{f_{(3^\pm)}} f_{(3^\pm)} \) that project \(V^\otimes 4 \) onto \(G^{(3^\pm)} \). When \(G = O \), first taking \(\lambda = (3) \), \(\mu = (4^+) \), \(\nu = (5) \) and then taking \(\lambda = (4^+) \), \(\mu = (5) \), \(\nu = (6) \) in Proposition 1.42 will construct the two remaining idempotents \(f_5 \) and \(f_6 \). Similarly, for \(G = I \), applying the procedure to \(\lambda = (5) \), \(\mu = (6^+) \), and \(\nu = (7) \), will produce the last idempotent \(f_7 \).

• The \(G = C_n \), \(n \leq \infty \) case: Let \(f_{(1)} \) and \(f_{(-1)} \) project \(V \) onto the one-dimensional modules \(G^{(1)} \) and \(G^{(-1)} \), respectively. Applying Proposition 1.42 with \(\lambda = (0) \) (i.e. with \(f_0 = 1 \)), \(\mu = (\pm 1) \), and \(\nu = (\pm 2) \) begins the recursive process and constructs \(f_{(\pm 1)} \). (We are adopting the conventions that \((+j) \) stands for \(j \) and \(G^{(j)} \cong G^{(i)} \) whenever \(n < \infty \) and \(j \equiv i \mod n \).) Then assuming we have constructed \(f_{(\pm j)} \) for all \(1 \leq j \leq k \), we obtain from the proposition that \(f_{(\pm (k+1))} = f_{(\pm k)} - f_{(\pm k)} e_{f_{(\pm k)}} f_{(\pm k)} \) projects \(V_{\text{new}}^{(k+1)} \) onto \(G^{(\pm (k+1))} \). In the case that \(G = C_{\infty} \), iterations of this process produce the idempotent projections onto \(V_{\text{new}}^{(\pm (k+1))} \) for all \(k \geq 1 \).

When \(n < \infty \), the diameter is \(\tilde{n} \), and we proceed as above to construct the idempotents \(f_{(\pm k)} \) for \(k \leq \tilde{n} \). Now \(V_{\text{new}}^{(\tilde{n})} = \mathbb{C}^{(\tilde{n})} \oplus \mathbb{C}^{(\tilde{n})} \) when \(n \) is even, as \(-\tilde{n} \equiv \tilde{n} \mod n \); and \(V_{\text{new}}^{(\tilde{n})} = \mathbb{C}^{(0)} \oplus \mathbb{C}^{(0)} \) when \(n \) is odd, as \(\tilde{n} = n \). The idempotent \(f_{(\pm \tilde{n})} \) projects onto the space \(\mathbb{C}_{V_{\text{new}}} \), where \(\mathbb{1} \) is the \(\tilde{n} \) tuple of all 1s, and \(V_{\text{new}}^{(\pm 1)} \) has \(\tilde{n} \) tensor factors equal to \(V_{\pm 1} \). In the centralizer algebra \(\mathbb{Z}_{\tilde{n}} \) there is a corresponding \(2 \times 2 \) matrix block. The idempotents \(f_{(\tilde{n})} \), \(f_{(-\tilde{n})} \) act as the diagonal matrix units \(E_{1,1} \), \(E_{-1,-1} \), respectively. The remaining basis elements of the matrix block are the matrix units \(E_{1,1} \), \(E_{-1,-1} \).

• The \(G = D_n \), \(2 \leq n \leq \infty \) case: Suppose first that \(n \geq 3 \). The symmetric tensors in \(V^{\otimes 2} \) are reducible in the \(D_n \)-case and decompose into a direct sum of the one-dimensional \(G \)-module \(G^{(0)} \) and the two-dimensional irreducible \(G \)-module \(G^{(2)} \). Let \(f_{(0')} \) and \(f_{(2)} \) denote the corresponding projections. Note that \(f_{(0')} + f_{(2)} = \mathbb{1} - \frac{1}{2} \mathbb{1} \). Starting with \(\lambda = (1) \) (so \(f_{(1)} = 1 \)), \(\mu = (2) \) and \(\nu = (3) \), and applying the recursive procedure, we obtain the idempotents \(f_k = f_{(k-1)} - f_{(k-1)} e_{f_{(k-1)}} f_{(k-1)} \) for all \(k = 3, 4, \ldots \) in the \(D_{\infty} \)-case, and for \(3 \leq k \leq n-1 \) in the \(D_n \)-case. Now \(G^{(n-1)} \otimes V = G^{(n-2)} \oplus G^{(n)} \oplus G^{(n')}, \) where \(G^{(n)} \) and \(G^{(n')} \) are one-dimensional \(G \)-modules. Denoting the projections onto them by \(f_{(n)} \) and \(f_{(n')} \) (they can be constructed using (1.39)), we have \(f_{(n-2)} + f_{(n)} + f_{(n')} = f_{(n-1)} \otimes \mathbb{1} \). Thus, \(Z_n = (Z_{n-1}, e_n, f_{(n)}) \).

Now when \(G = D_2 \), then \(\text{br}(G) = 1 \), and the branch node \(\text{br}(G) \) has degree 4 in the corresponding Dynkin diagram. In this case

\[
1 - \frac{1}{2} e_1 = f_2 = f_{(0')} + f_{(2')} + f_{(2)},
\]

where the 3 summands on the right are mutually orthogonal idempotents giving the projections onto the one-dimensional irreducible \(G \)-modules \(G^{(0')}, G^{(2')}, \) and \(G^{(2)} \), respectively. Thus \(Z_2 = \mathbb{C} \mathbb{1} \oplus \mathbb{C} e_1 \oplus \mathbb{C} f_{(0')} \oplus \mathbb{C} f_{(2')} \).
Note that when 2 ≤ n < ∞, and μ = (n) or (n')(or (0') when n = 2), then by Lemma 1.40
\[ε_n(f_μ) = \frac{1}{4} f_{(n-1)}, \quad e_n f_μ e_n = 2 ε_n(f_μ) e_n = \frac{1}{2} f_{(n-1)} e_n, \]
(where f_{(n-1)} = f_1 = 1 when n = 2).

Theorem 1.45. Let \(G, \text{br}(G), \) and \(\text{di}(G) \) be as in (1.37), and let \(Z_k = Z_k(G) \). Then \(Z_1 = C_1 \cong Z_0 \).

Moreover,

\(a) \) if 1 ≤ k < di(G), and \(k \neq \bar{n} - 1 \) in the case \(G = C_n \), then \(Z_{k+1} = Z_k e_k Z_k \oplus \text{End}_G(V_{\text{new}}^{k}) \),

where \(\text{End}_G(V_{\text{new}}^{k}) \) is a commutative subalgebra of dimension equal to the number of nodes in \(\mathcal{R}_V(G) \) a distance \(k \) from the trivial node;

\(b) \) if \(k \geq \text{di}(G) \), then \(Z_{k+1} = Z_k e_k Z_k \);

\(c) \) if 1 ≤ k < di(G), \(k \neq \text{br}(G) \), and \(k \neq \bar{n} - 1 \) in the case \(G = D_n \), then \(Z_{k+1} = (Z_k, e_k) \);

\(d) \) if \(k = \text{br}(G) \) and \(G \neq D_2 \), then \(Z_{k+1} = (Z_k, e_k, f_\mu) \), where \(\mu \) is either of the two elements in \(\Lambda_{k+1}(G) \setminus \Lambda_{k-1}(G) \), and \(f_\mu \) is the projection of \(V_{\text{new}}^{(k+1)} \) onto \(G^\mu \),

\(e) \) if \(G = C_n \) (n < ∞), then \(Z_n = (Z_{n-1}, e_{n-1}, E_{p,q}, \text{for } p, q \in \{-1, 1\}) \), where \(E_{p,q} \) is the matrix unit in Examples 1.44.

\(f) \) if \(G = D_n \) (2 < n < ∞) then \(Z_n = (Z_{n-1}, e_{n-1}, f_\mu) \), where \(\mu \in \{(n), (n')\} \)

\(g) \) if \(G = D_2 \), then \(Z_2 = (Z_1, e_1, f_{\mu_1}, f_{\mu_2}) \) where \(\mu_1, \mu_2 \in \{(0'), (2'), (2')\} \), \(\mu_1 \neq \mu_2 \).

Proof. (a) Since \(k < \text{di}(G) \), \(V_{\text{new}}^{(k+1)} \) is a direct sum of irreducible \(G \)-modules each with multiplicity 1 (except for the case where \(G = C_n \) and \(k = \bar{n} - 1 \) which is handled in part (e)), and the centralizer \(\text{End}_G(V_{\text{new}}^{(k+1)}) \) is commutative and spanned by central idempotents which project onto the irreducible summands. Thus, the dimension equals the number of new modules that appear at level \(k + 1 \).

(b) When \(k \geq \text{di}(G) \), \(V_{\text{new}}^{(k+1)} = 0 \), and \(Z_{k+1} = Z_k e_k Z_k \) follows from (1.32).

(c) If \(k \geq \text{di}(G) \), and \(Z_{k+1} \) is the neighborhood of a node \(\mu \) in \(\mathcal{R}_V(G) \) with \(\mu \) a distance \(k \) from the trivial node and \(\deg(\mu) = 2 \), then \(G^\nu \) has multiplicity 1 in \(V_{\text{new}}^{(k+1)} \). By Proposition 1.42, the central projection from \(V_{\text{new}}^{(k+1)} \) onto \(G^\nu \) is given by \(f_\nu = f_\mu - \frac{\partial}{\partial \mu} f_\nu e_k f_\mu \), where \(f_\mu \in Z_k \) projects \(V_{\text{new}}^k \) to \(G^\mu \). Thus \(f_\nu \in \langle Z_k, e_k \rangle \), and the set of \(f_\nu \), for \(\nu \) a distance \(k \) from the trivial node in \(\mathcal{R}_V(G) \), generate \(\text{End}_G(V_{\text{new}}^{(k+1)}) \). The result then follows from part (a).

(d) If \(k = \text{br}(G) \) and \(G \neq D_2 \), then \(V_{\text{new}}^{(k+1)} \cong V(k + 1) \cong G^{\beta_1} \oplus G^{\beta_2} \) where \(\{\beta_1, \beta_2\} = \Lambda_{k+1}(G) \setminus \Lambda_{k-1}(G) \). The Jones-Wenzl idempotent decomposes as \(f_{k+1} = f_{\beta_1} + f_{\beta_2} \) as in (1.38) (where the \(f_{\beta_j} \) can be constructed as in (1.39)). We know from (1.34), that \(1 - f_{k+1} = \langle e_1, \ldots, e_k \rangle \subseteq \text{End}_G(V_{\text{new}}^{(k+1)}) \), and we have \(f_{\beta_1} + f_{\beta_2} = 1 - (1 - f_{k+1}) \). Thus, \(Z_{k+1} \) is generated by \(Z_k, e_k, f_{\beta_j} \) for \(j = 1 \) or \(j = 2 \).

(e) If \(G = C_n \) and \(k = \bar{n} - 1 \), then \(G^{(n)} \) has multiplicity 2 in \(V_{\text{new}}^{\bar{n}} \), where \(G^{(n)} := G^{(0)} \) if \(n \) is odd. In this case, \(\text{End}_G(V_{\text{new}}^{(n)}) \) is 4-dimensional with a basis of matrix units as in Examples 1.44.

(f) If \(G = D_n \) with 2 < n < ∞, then \(V_{\text{new}}^{(n)} \cong G^{(n)} \oplus G^{(n')}, \) and we let \(f_{(n)} \) and \(f_{(n')} \) project \(V_{\text{new}}^{(n)} \) onto \(G^{(n)} \) and \(G^{(n')} \), respectively. As in part (d), these minimal central idempotents can be constructed using (1.39); the only difference in this case is that \(f_{(n)} + f_{(n')} \) does not equal the Jones-Wenzl idempotent \(f_n \); however, \(f_{(n-1)} = f_{(n-2)} + f_{(n)} + f_{(n')} \) holds.
Proposition 1.47. \(f_0, f_1, f_2 \) can be constructed as in (1.39). Furthermore \(f_0 + f_1 + f_2 = f_2 = 1 - \frac{1}{2} e_1 \), so \(Z_2 \) is generated by \(e_1, Z_1 \), and any two of \(f_0, f_1, f_2 \).

Examples 1.46. For all \(G \neq C_n \) for \(2 \leq n \leq \infty \), we have \(Z_1 = \mathbb{C}1 \cong \mathbb{Z}_0 \).

- If \(G = O \), then from Theorem 1.45 we deduce the following: \(Z_2 = Z_1 e_1 Z_1 + C f_2 = C e_1 + C f_2 \cong TL_2(2) \), where \(f_2 = 1 - \frac{1}{2} e_1 \); \(Z_3 = Z_2 e_2 Z_2 + C f_3 \cong TL_3(2) \) where \(f_3 = f_2 - \frac{3}{2} f_2 e_2 f_2 \); \(Z_4 = \langle Z_3, e_3, f_{4(+)} \rangle = \langle Z_3, e_3, f_{4(+)} \rangle \) where \(f_{4(+)} + f_{4(-)} = f_4 = f_3 - \frac{2}{9} f_3 e_3 f_3 \); \(Z_5 = \langle Z_4, e_4 \rangle \); \(Z_6 = \langle Z_5, e_5 \rangle \); and \(Z_{k+1} = Z_k e_k Z_k \) for all \(k \geq 7 \). When \(2 \leq k \leq di(O) = 6 \), there is exactly one new idempotent added each time, except for \(k = 4 \), where the two idempotents \(\frac{1}{2} e_3 \) and \(f_{4(+)} \) must be adjoined to \(Z_3 \) to get \(Z_4 \). Each added idempotent corresponds to a highlighted edge in the Bratteli diagram of \(O \) (see Section 4.2). The highlighted edges together with the nodes attached to them give the Dynkin diagram of \(\tilde{E}_7 \). (In fact, for all groups \(G \), the added idempotents give the corresponding Dynkin diagram as a subgraph of the Bratteli diagram.)

- If \(G = D_n \) for \(n > 2 \). Then \(Z_2 = \langle Z_1, e_1, f_0' \rangle = \langle Z_1, e_1, f_2 \rangle \) where \(f_0' + f_2 = f_2 = 1 - \frac{1}{2} e_1 \); \(Z_{k+1} = \langle Z_k, e_k \rangle \) for \(2 \leq k \leq n-1 \); \(Z_n = \langle Z_{n-1}, e_{n-1}, f_n, f_0' \rangle \); \(Z_{k+1} = Z_k e_k Z_k \) for all \(k \geq n \).

1.9 Relations
Recall that \(Z_k(G) \cong TL_k(2) \) for all \(k \geq 0 \) and that \(TL_k(2) \) has generators \(e_i \) (\(1 \leq i < k \)), which satisfy the following relations from (1.21):

\[
\begin{align*}
(a) \quad e_i^2 &= 2 e_i, \quad e_i e_{i+1} e_i = e_i, \quad \text{and} \quad e_i e_j = e_j e_i, \quad \text{for} \quad |i-j| > 1.
\end{align*}
\]

In the next two results, we identify additional generators needed to generate \(Z_k(G) \) and the relations they satisfy. In most instances, these are not minimal sets of generators (as is evident from Theorem 1.45), but rather the generators are chosen because they satisfy some reasonably nice relations.

Proposition 1.47. Let \(Z_k = Z_k(G) \) for all \(k \geq 0 \), \(\ell = \text{br}(G) \), and \(\text{di}(G) = \ell + m \). Suppose \(\nu_0 = (\ell, \nu_1, \ldots, \nu_m) \) is a sequence of distinct nodes from the branch node (\(\ell \)) to the node \(\nu_m \) a distance \(\text{di}(G) \) from 0. Set \(b_j := f_{\nu_j} \) (the projection of \(V_{\text{new}}^{\nu_0(\ell+j)} \) onto \(G^{\nu_j} \)), and let \(d_j = d^{\nu_j} = \dim G^{\nu_j} \) for \(j = 0, 1, \ldots, m \). Then the following hold:

(i) If \(k \leq \ell \), then \(Z_k = TL_k(2) \), and \(Z_k \) has generators \(e_i \) (\(1 \leq i < k \)) which satisfy (a).

(ii) If \(\ell < k \leq \ell + m = \text{di}(G) \), and \(k \neq \text{di}(G) \) for \(G = C_n, D_n \), \(n < \infty \), then \(Z_k \) has generators \(e_i \) (\(1 \leq i < k \)) and \(b_j \) (\(1 \leq j \leq k - \ell \)) which satisfy (a) and

\[
\begin{align*}
(b) \quad &b_i b_j = b_j b_i, \quad \text{for all} \quad 0 \leq i \leq j \leq k - \ell; \\
(c) \quad &b_{j+1} = b_j - \frac{d_j-1}{d_j} b_j e_{\ell+j} b_j, \quad \text{for all} \quad j = 1, \ldots, k - \ell - 1; \\
(d) \quad &e_i b_j = b_j e_i, \quad \text{for all} \quad 1 \leq i \leq \ell + j, \quad \text{and} \quad e_i b_j = b_j e_i, \quad \text{for all} \quad \ell + j < i \leq k; \\
(e) \quad &e_\ell b_j e_{\ell+j} = \frac{d_j}{d_j-1} b_j e_{\ell+j}, \quad \text{for all} \quad j = 1, \ldots, k - \ell.
\end{align*}
\]

(iii) If \(k > \text{di}(G) \), and \(G \neq C_n, D_n \) for \(n < \infty \), then \(Z_k \) has generators \(e_i \) (\(1 \leq i < k \)) and \(b_j \) (\(1 \leq j \leq m \)) which satisfy (a)-(e) and

\[
\begin{align*}
(f) \quad &b_m = \frac{d_m-1}{d_m} b_m e_{\ell+m} b_m.
\end{align*}
\]
Proposition 1.49. Assume $\mathbf{G} = \mathbb{C}_n, \mathbb{D}_n$ for $n < \infty$, and let $Z_k = Z_k(\mathbb{G})$ where $k \geq \text{dim}(\mathbb{G})$. Then we have the following:

(C$_n$) Z_k has generators e_i $(1 \leq i < k)$ and b_j^\pm $(1 \leq j \leq \tilde{n} = \text{dim}(\mathbb{G}))$ (where b_j^\pm is the projection of $V_{\text{new}}^{(j)}$ onto $\mathbb{G}^{(j)}$), together with $b_j^- = E_{-1,1}, b_j^+ = E_{k-1}$, such that the relations in (a)-(e) hold when $b_j = b_j^-$ or when $b_j = b_j^+$. In addition, the following relations hold:

(fc) $(b_j^-)^2 = b_j^-, \quad$ and $\quad b_j^+ b_j^- = 0 = b_j^+ b_j^-$, for all $1 \leq i, j \leq \tilde{n}$; and

(gc) $b_j^+ b_j^- = b_j^-, \quad$ and $\quad b_j^- = b_j^-$,

(bj) $b_j^0 = \delta_{j,0} b_j^0$ for $\gamma, \zeta, \eta, \vartheta \in \{-, +\}$ and $b_j^0 b_j^0 = 0 = b_j^0 b_j^0$ for $\zeta \neq \gamma$, $1 \leq j \leq \tilde{n}$.

D$_n$) Z_k has generators e_i $(1 \leq i < k), b_j$ $(1 \leq j < n = \text{dim}(\mathbb{G}))$, and b', where b_j is the projection of $V^{(j)}$ onto $\mathbb{G}^{(j)}$, and b' is the projection of $V^{(j+1)}$ onto $\mathbb{G}^{(j+1)}$. They satisfy the relations in (a)-(f) of Proposition 1.47, and additionally

(gd) $b_j b' = b' b_j$, for $1 \leq j < n$, \quad (b')$^2 = b'$, and $b_{n-1} b' = 0 = b' b_{n-1};$

(lD) $e_i b' = b' e_i = \frac{1}{2} b_{n-1} e_i, \quad$ and $\quad e_i b' = 0 = b' e_i = 0$ for $1 < i < n$, and $e_i b' = b' e_i$ for $i > n$;

(ip) $b_{n-1} = 2b_{n-1} e_n b_{n-1} - 2b' e_n b'$.

Proof. For $\mathbf{G} = \mathbb{C}_n$, the fact that $e_1, \ldots, e_k-1, b_1^\pm, \ldots, b_n^\pm, b_{n-1}^\pm$ generate Z_k follows from Theorem 1.45 part (a), (d), and (e). Relations (a)-(e) hold as in Proposition 1.47. Using (c) of Proposition 1.47 and induction, it is straightforward to prove that $b_k^\pm = E_{\pm k\pm, \pm 1} \in Z_k$, where \pm is the k-tuple of all \pms. The relations in (fc) and (gc) then follow by multiplication of matrix units.

For $\mathbf{G} = \mathbb{D}_n$, the fact that $e_1, \ldots, e_k-1, b_1^\pm, \ldots, b_{n-1}^\pm, b_n^\pm$ generate Z_k follows from Theorem 1.45 part (a), (d), and (f). In Z_k, the projection onto $\mathbb{G}^{(2)}$ is $b_1 = E_{(1,1),(1,1)} + E_{(-1,-1),(-1,-1)}$. It follows easily by induction that for $2 \leq j < n-1$, $b_j = b_{j-1} - e_j b_{j-1} = E_{1j,1} + E_{-1j,-1}$ is projection of $V^{(j)}$ onto $\mathbb{G}^{(j)}$, where \pm is the j-tuple of all \pms. When $j = n-1$ we have $b_{n-1} e_n b_{n-1} = E_{1n,1} + E_{-1n,-1}$ is the projection onto $\mathbb{G}^{(n)} \oplus \mathbb{G}^{(n)}$, and this splits into projections $b_{n-1} = \frac{1}{2}(E_{1n,1} + E_{-1n,-1}) = E_{1n,1} + E_{-1n,-1}$ and $b' = \frac{1}{2}(E_{1n,1} + E_{-1n,-1} + E_{2n,2} + E_{-2n,-2})$, which project onto $\mathbb{G}^{(n)}$ and $\mathbb{G}^{(n)}$, respectively. The other relations follow by multiplication of matrix units.

\[\square\]
2.1 The Centralizer algebra

Then

\[V \cong C \otimes \Lambda \]

modules are \((k \otimes a)\) (superscripts interpreted \(\mod n\)). When \(r \equiv \ell \mod n\) occurs in some expression.

Assume

\[\bar{v}_t = v_{s_{2t}} \in V^{\otimes k}, \]

and are given by \(C_n^{(\ell)} = C_{v_1}^{(\ell)}\) for \(\ell = 0, 1, \ldots, n - 1\), where \(g v_\ell = \zeta^\ell v_\ell\), and \(C_n^{(\ell)} \otimes C_n^{(m)} \cong C_n^{(\ell + m)}\) (superscripts interpreted \(\mod n\)). Thus, we can assume that the labels for the irreducible \(C_n\)-modules are \((\ell)\), where \(\ell \in \Lambda(C_n) = \{0, 1, \ldots, n - 1\}\), with the understanding that \((j) = (\ell)\) whenever an integer \(j\) such that \(j \equiv \ell \mod n\) occurs in some expression.

The natural \(C_n\)-module \(V\) of \(2 \times 1\) column vectors which \(C_n\) acts on by matrix multiplication can be identified with the module \(C_n^{(-1)} \oplus C_n^{(1)}\). As before, we let \(v_{-1} = (1, 0)^t\) and \(v_1 = (0, 1)^t\).

2. The Cyclic Subgroups

Let \(C_n\) denote the cyclic subgroup of \(SU_2\) generated by

\[g = \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & \zeta \end{pmatrix} \in SU_2, \]

where \(\zeta = \zeta_n\), a primitive \(n\)th root of unity. The irreducible modules for \(C_n\) are all one-dimensional and are given by \(C_n^{(\ell)} = C_{v_1}^{(\ell)}\) for \(\ell = 0, 1, \ldots, n - 1\), where \(g v_\ell = \zeta^\ell v_\ell\), and \(C_n^{(\ell)} \otimes C_n^{(m)} \cong C_n^{(\ell + m)}\) (superscripts interpreted \(\mod n\)). Thus, we can assume that the labels for the irreducible \(C_n\)-modules are \((\ell)\), where \(\ell \in \Lambda(C_n) = \{0, 1, \ldots, n - 1\}\), with the understanding that \((j) = (\ell)\) whenever an integer \(j\) such that \(j \equiv \ell \mod n\) occurs in some expression.

The natural \(C_n\)-module \(V\) of \(2 \times 1\) column vectors which \(C_n\) acts on by matrix multiplication can be identified with the module \(C_n^{(-1)} \oplus C_n^{(1)}\). As before, we let \(v_{-1} = (1, 0)^t\) and \(v_1 = (0, 1)^t\).

2.1 The Centralizer algebra \(Z_k(C_n)\)

Our aim in this section is to understand the centralizer algebra \(Z_k(C_n)\) of the \(C_n\)-action on \(V^{\otimes k}\) and the representation theory of \(Z_k(C_n)\). As in (1.17), let

\[\bar{n} = \begin{cases} n & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even}. \end{cases} \quad (2.1) \]

Assume \(r = (r_1, \ldots, r_k) \in \{-1, 1\}^k\), and set

\[|r| = \{|r_i | r_i = -1\}|. \quad (2.2) \]

Corresponding to \(r \in \{-1, 1\}^k\) is the vector \(v_r = v_{r_1} \otimes \cdots \otimes v_{r_k} \in V^{\otimes k}\), and

\[g v_r = \zeta^{k - 2|r|} v_r. \quad (2.3) \]

For two such \(k\)-tuples \(r\) and \(s\),

\[k - 2|r| \equiv k - 2|s| \mod n \iff |r| \equiv |s| \mod \bar{n}. \]

Recall that \(\Lambda_k(C_n)\) is the subset of \(\Lambda(C_n) = \{0, 1, \ldots, n - 1\}\) of labels for the irreducible \(C_n\)-modules occurring in \(V^{\otimes k}\). Now if \(\ell \in \Lambda(C_n)\), then

\[\ell \in \Lambda_k(C_n) \iff k - 2|r| \equiv \ell \mod n \text{ for some } r \in \{-1, 1\}^k. \]

Thus,

\[\Lambda_k(C_n) = \{ \ell \in \Lambda(C_n) | \ell \equiv k - 2a_t \mod n \text{ for some } a_t \in \{0, 1, \ldots, k\} \}. \quad (2.4) \]

We will always assume \(a_t\) is the minimal value in \(\{0, 1, \ldots, k\}\) with that property.

In particular, \(k - \ell\) must be even when \(n\) is even. Hence there are at most \(\bar{n}\) distinct values in \(\Lambda_k(C_n)\). When \(k \geq \bar{n} - 1\), then for every \(a \in \{0, 1, \ldots, \bar{n} - 1\}\), there exists an \(\ell \in \Lambda_k(C_n)\) so that \(k - 2a \equiv \ell \mod n\), and there are exactly \(\bar{n}\) distinct values in \(\Lambda_k(C_n)\).

Lemma 2.5. Assume \(r\) and \(s\) are two \(k\)-tuples satisfying \(|r| \equiv |s| \mod \bar{n}\). Let \(E_{r,s}\) be the transformation on \(V^{\otimes k}\) defined by

\[E_{r,s} v_t = \delta_{s,t} v_r. \quad (2.6) \]

Then \(E_{r,s} \in Z_k(C_n)\).
Proof. Note that \(gE_{rs}v_t = \delta_{st} \zeta^{k-2|r|}v_t \), while \(E_{rs}gv_t = \zeta^{k-2|s|} \delta_{st} v_r \). Consequently, \(gE_{rs} = E_{rs}g \) for all such tuples \(r, s \), and \(E_{rs} \in Z_k(C_n) \) by (2.4).

\[\text{Theorem 2.7.} \quad (a) \quad \text{The set} \]
\[B^k(C_n) = \{ E_{rs} \mid r, s \in \{-1, 1\}^k, \ |r| \equiv |s| \mod \bar{n} \} \quad (2.8) \]

is a basis for the centralizer algebra \(Z_k(C_n) = \text{End}_{C_n}(V^{\otimes k}) \).

(b) The set \(\{ z_\ell \mid \ell \in \Lambda_k(C_n) \} \) is a basis for the center of \(Z_k(C_n) \), where
\[z_\ell = \sum_{r \in \{-1, 1\}^k \atop k-2|\ell| \equiv \ell \mod \bar{n}} E_{r, r} \quad \text{for} \quad \ell \in \Lambda_k(C_n). \quad (2.9) \]

(c) If \(n = 2\bar{n} \) and \(\bar{n} \) is odd, then \(Z_k(C_n) \cong Z_k(C_{\bar{n}}) \).

(d) The dimension of the centralizer algebra \(Z_k(C_n) \) is the coefficient of \(z^k \) in \((1 + z)^{2k} |_{z^{\bar{n}} = 1} \); hence, it is given by
\[\dim Z_k(C_n) = \sum_{0 \leq a, b \leq k \atop a \equiv b \mod \bar{n}} \binom{k}{a} \binom{k}{b}. \quad (2.10) \]

Remark 2.11. The notation \((1 + z)^{2k} |_{z^{\bar{n}} = 1} \) used in the statement of this result can be regarded as saying consider \((1 + z)^{2k} \) in the polynomial algebra \(C[z] \) modulo the ideal generated by \(z^{\bar{n}} - 1 \), where \(\bar{n} \) is as in (2.1).

Proof. (a) For \(X \in \text{End}(V^{\otimes k}) \), suppose that \(Xv_s = \sum_r X_{rs}v_r \) for scalars \(X_{rs} \in C \), where \(r \) ranges over all the \(k \)-tuples in \(\{-1, 1\}^k \). Then \(X \in Z_k(C_n) \) if and only if \(g^{-1}Xg = X \) if and only if
\[g^{-1}Xv_s = \sum_r \zeta^{k-2|s|-(k-2|r|)} X_{r, s}v_r = \sum_r X_{r, s}v_r. \]

Hence, for all \(r, s \), with \(X_{rs} \neq 0 \), it must be that \(\zeta^{2(|r|-|s|)} = 1 \); that is, \(|r| \equiv |s| \mod \bar{n} \) by (2.4). Thus, \(X = \sum_{|r| \equiv |s| \mod \bar{n}} X_{r, s}E_{r, s} \), and the transformations \(E_{r, s} \) with \(|r| \equiv |s| \mod \bar{n} \) span \(Z_k(C_n) \). It is easy to see that the \(E_{r, s} \) multiply like matrix units and are linearly independent, so they form a basis of \(Z_k(C_n) \).

(b) For each \(\ell \in \Lambda_k(C_n) \), the basis elements \(E_{rs} \) with \(|r| = |s| \equiv \frac{1}{2} (k - \ell) \mod \bar{n} \) form a matrix algebra, whose center is \(Cz_\ell \) where \(z_\ell \) is as in (2.9). Since \(Z_k(C_n) \) is the direct sum of these matrix algebra ideals as \(\ell \) ranges over \(\Lambda_k(C_n) \), the result follows.

When \(n = 2\bar{n} \) and \(\bar{n} \) is odd, the elements \(\{ E_{rs} \mid |r| \equiv |s| \mod \bar{n} \} \) comprise a basis of both \(Z_k(C_n) \) and \(Z_k(C_{\bar{n}}) \) to give the assertion in (c).

(d) It follows from Lemma 2.5 that
\[\dim Z_k(C_n) = \sum_{0 \leq a, b \leq k \atop a \equiv b \mod \bar{n}} \binom{k}{a} \binom{k}{b} = \sum_{0 \leq a, b \leq k \atop a \equiv b \mod \bar{n}} \binom{k}{a} \binom{k}{k - b}. \]

Since \(a + k - b \equiv k \mod \bar{n} \), this expression is the coefficient of \(z^k \) in \((1 + z)^k(1 + z)^k |_{z^{\bar{n}} = 1} = (1 + z)^{2k} |_{z^{\bar{n}} = 1} \), as claimed.
Example 2.12. Suppose \(n = 8 \) (so \(\tilde{n} = 4 \)) and \(k = 6 \). Then
\[
\begin{align*}
|\{(r, s) \mid |r| \equiv |s| \equiv 0 \mod 4\}| &= \binom{6}{0}^2 + \binom{6}{4}^2 + 2 \binom{6}{0} \binom{6}{4} = 256 \\
|\{(r, s) \mid |r| \equiv |s| \equiv 1 \mod 4\}| &= \binom{6}{1}^2 + \binom{6}{5}^2 + 2 \binom{6}{1} \binom{6}{5} = 144 \\
|\{(r, s) \mid |r| \equiv |s| \equiv 2 \mod 4\}| &= \binom{6}{2}^2 + \binom{6}{6}^2 + 2 \binom{6}{2} \binom{6}{6} = 256 \\
|\{(r, s) \mid |r| \equiv |s| \equiv 3 \mod 4\}| &= \binom{6}{3}^2 = 400.
\end{align*}
\]
Therefore \(\dim Z_6(C_8) = 1056 \). Now observe that when \(k = 6 \) and \(n = 8 \) that
\[
(1 + z)^{2k}\big|_{z^6=1} = (1 + z)^{12}\big|_{z=1} = 1 + 12z + 66z^2 + 220z^3 + 495 + 792z + 924z^2 + 792z^3 + 495 + 220z + 66z^2 + 12z^3 + 1.
\]
Since \(k = 6 \equiv 2 \mod 4 \), by (c) of Theorem 2.7, we have that \(\dim Z_6(C_8) \) is the coefficient of \(z^2 \) in this expression, so \(\dim Z_6(C_8) = 66 + 220 = 284 \), in agreement with the above calculation.

Remark 2.13. The matrix units can be viewed diagrammatically. For example, if \(k = 12, n = 6, \tilde{n} = 3, \) and \(r = (-1, -1, 1, -1, -1, 1, 1, 1, 1, -1) \in \{-1, 1\}^{12}, \) then \(|r| = 5 \equiv 2 \mod 3 \), and if \(s = (1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1) \), then \(|s| = 8 \equiv 2 \equiv |r| \mod 3 \). In this case, we identify the matrix unit \(E_{r,s} \) with the diagram below

Each such two-rowed \(k \)-diagram \(d \) corresponds to two subsets, \(t(d) \subseteq \{1, 2, \ldots, k\} \) and \(b(d) \subseteq \{1', 2', \ldots, k'\} \), recording the positions of the \(-1\)s in the top and bottom rows of \(d \), hence in \(r \) and \(s \) respectively, and \(|t(d)| \equiv |b(d)| \mod \tilde{n} \). Under this correspondence, diagrams multiply as matrix units. Thus, if \(d_1 \) and \(d_2 \) are diagrams, then
\[
d_1d_2 = \delta_{b(d_1),t(d_2)}d_3
\]
where \(d_3 \) is the unique diagram given by \(t(d_3) = t(d_1) \) and \(b(d_3) = b(d_2) \). For example, if \(\tilde{n} = 3, \)

\[
\begin{align*}
d_1 &= \begin{array}{c}
\bullet \quad \bullet \\
\end{array} \\
&= d_3.
\end{align*}
\]
2.2 Irreducible Modules for $Z_k(C_n)$

For $\ell \in \Lambda_k(C_n)$, set

$$Z_k^{(\ell)} := \text{span}_C \{ v_r \in V^\otimes k \mid k - 2|r| \equiv \ell \mod n \} = \text{span}_C \{ v_r \in V^\otimes k \mid |r| \equiv a_{\ell} \mod \tilde{n} \},$$

where a_{ℓ} is as in (2.4). When we need to emphasize that we are working with the group C_n, we will write this as $Z_k(C_n)^{(\ell)}$. Now g acts as the scalar ζ^ℓ on $Z_k^{(\ell)}$, and these scalars are distinct for different values of $\ell \in \{0, 1, \ldots, n-1\}$. Therefore,

$$V^\otimes k = \bigoplus_{\ell \in \Lambda_k(C_n)} Z_k^{(\ell)}$$

is a decomposition of $V^\otimes k$ into C_n-modules.

The mappings $E_{r,s}$ with $|r| \equiv |s| \equiv a_{\ell} \mod \tilde{n}$ act as matrix units on $Z_k^{(\ell)}$ and act trivially on $Z_k^{(m)}$ for $m \in \Lambda_k(C_n)$, $m \neq \ell$. In addition,

$$\text{span} \{ E_{r,s} \mid |r| \equiv |s| \equiv a_{\ell} \mod \tilde{n} \} = \text{End}(Z_k^{(\ell)}) = \text{End}_{C_n}(Z_k^{(\ell)}).$$

As a consequence, we have that the spaces $Z_k^{(\ell)}$ are modules for $Z_k(C_n)$. Since they are also invariant under the action of C_n, they are modules both for C_n and for $Z_k(C_n)$. It is apparent that $Z_k^{(\ell)}$ is irreducible as a $Z_k(C_n)$-module from the fact that the natural module for a matrix algebra is its unique irreducible module.

Examples 2.15. For any $m \geq 1$, let ζ_m be a primitive mth root of unity. Assume $k = 5$ and $n = 12$, so $\tilde{n} = 6$. Then $Z_5(C_{12})$ has 6 irreducible modules $Z_5(C_{12})^{(\ell)}$ for $\ell = 1, 3, 5, 7, 9, 11$. On them, the generator g of C_{12} acts by the scalars $\zeta_{12}, \zeta_{12}^3, \zeta_{12}^5, \zeta_{12}^7, \zeta_{12}^9, \zeta_{12}^{11}$, respectively.

The algebra $Z_5(C_6)$ has 3 irreducible modules $Z_5(C_6)^{(\ell)}$ for $\ell = 1, 3, 5$, on which the generator g' of C_6 acts by the scalars $\zeta_{6}^1, \zeta_{6}^3, \zeta_{6}^5$, respectively.

The algebra $Z_5(C_3)$ also has 3 irreducible modules $Z_5(C_3)^{(\ell)}$ for $\ell = 0, 1, 2$, on which the generator g'' of C_3 acts by the scalars $1, \zeta_3, \zeta_3^2$, respectively.

The vectors $\{ v_r \mid r \in \{-1, 1\}^5, k - 2|r| \equiv \ell \mod 3 \}$ form a basis for $Z_5(C_6)^{(1)}$ and $Z_5(C_3)^{(1)}$ when $\ell \equiv 1 \mod 3$; for $Z_5(C_6)^{(3)}$ and $Z_5(C_3)^{(3)}$ when $\ell \equiv 0 \mod 3$; and for $Z_5(C_6)^{(5)}$ and $Z_5(C_3)^{(5)}$ when $\ell \equiv 2 \mod 3$.

The next result gives an expression for the dimension of the module $Z_k^{(\ell)} = Z_k(C_n)^{(\ell)}$.

Theorem 2.16. With \tilde{n} as in (2.1), suppose $\ell \in \Lambda_k(C_n)$ and $k - 2a_{\ell} \equiv \ell \mod n$ as in (2.4). Then $Z_k^{(\ell)} = \text{span}_C \{ v_r \in V^\otimes k \mid |r| \equiv a_{\ell} \mod \tilde{n} \}$ is an irreducible $Z_k(C_n)$-module and the following hold:

(i) $\dim Z_k^{(\ell)} = \sum_{0 \leq k < \tilde{n}} \binom{k}{b}$, which is the coefficient of $z^{a_{\ell}}$ in $(1 + z)^k \big|_{z = 1}$

(ii) As a bimodule for $C_n \times Z_k(C_n)$

$$V^\otimes k \cong \bigoplus_{\ell \in \Lambda_k(C_n)} \left(C_n^{(\ell)} \otimes Z_k^{(\ell)} \right).$$

(Here C_n acts only on the factors $C_n^{(\ell)}$ and $Z_k(C_n)$ on the factors $Z_k^{(\ell)}$. Since $Z_k^{(\ell)}$ is also both a C_n and a $Z_k(C_n)$-module and the actions commute, the decomposition $V^\otimes k = \bigoplus_{\ell \in \Lambda_k(C_n)} Z_k^{(\ell)}$ is also a $C_n \times Z_k(C_n)$-bimodule decomposition.)
(iii) $C_n^{(a)}$ occurs as a summand in the C_n-module $V^* \otimes k$ with multiplicity

$$m_k^{(a)} = \sum_{0 \leq b \leq k, b \equiv a \mod n} \binom{k}{b} = \dim Z_k^{(a)}.$$

(iv) The number of walks on the affine Dynkin diagram of type \hat{A}_{n-1} starting at node 0 and ending at node ℓ and taking k steps is the coefficient of z^a in $(1 + z)^k |_{z = 1}$, which is $m_k^{(a)} = \dim Z_k^{(a)}$.

Proof. Part (i) follows readily from the fact that a basis for $Z_k^{(a)}$ consists of the vectors v_r labeled by the tuples $r \in \{-1, 1\}^k$ with $|r| = b \equiv a \mod n$ (see (2.14)), and the number of k-tuples r with b components equal to -1 is $\binom{k}{b}$. Each such vector v_r satisfies $g v_r = \zeta^{k-2} |r| v_r = \zeta^k v_r$; hence $Cv_r \cong C_n^{(a)}$ as a C_n-module. The other statements are apparent from these.

Examples 2.18. Consider the following special cases for C_n, where \tilde{n} is as in (2.1).

(i) If $k < \tilde{n}$, then $\dim Z_k(C_n) = \sum_{a=0}^{k} \binom{k}{a}^2 = \binom{2k}{k}$.

(ii) If $k = \tilde{n}$, then for $\ell \in \{0, 1, \ldots, n-1\}$ such that $k - 2 \cdot 0 \equiv \ell \mod n$, we have $\dim Z_{\tilde{n}}^{(a)} = \binom{\tilde{n}}{0} + \binom{\tilde{n}}{\tilde{n}} = 2$, and $\dim Z_{\tilde{n}}(C_n) = \sum_{a=1}^{\tilde{n}-1} \binom{\tilde{n}}{a}^2 + 2^2 = \binom{2\tilde{n}}{\tilde{n}} + 2$.

Example 2.19. Suppose $k = 6$ and $n = 8$, so $\tilde{n} = 4$. The irreducible C_8-modules $C_8^{(a)}$ occurring in $V^* \otimes 6$ have $\ell = 0, 2, 4, 6$, and $a_\ell = 3, 2, 1, 0$, respectively, where $k - \ell \equiv 2a_\ell \mod 8$. We have the following expressions for the number $m_8^{(a)}$ of times $C_8^{(a)}$ occurs as a summand.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>a_ℓ</th>
<th>$m_6^{(a)}$</th>
<th>$m_6^{(a)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>$m_6^{(0)} = \binom{6}{3} = 20 = \dim Z_6^{(0)}$</td>
<td>$m_6^{(0)}$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$m_6^{(2)} = \binom{6}{2} + \binom{6}{6} = 16 = \dim Z_6^{(2)}$</td>
<td>$m_6^{(2)}$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$m_6^{(4)} = \binom{6}{1} + \binom{6}{5} = 12 = \dim Z_6^{(4)}$</td>
<td>$m_6^{(4)}$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>$m_6^{(6)} = \binom{6}{0} + \binom{6}{4} = 16 = \dim Z_6^{(6)}$</td>
<td>$m_6^{(6)}$</td>
</tr>
</tbody>
</table>

In particular

$$\dim Z_6(C_8) = \sum_{\ell \in \Lambda_k(n)} \left(\dim Z_6^{(a)} \right)^2 = 20^2 + 16^2 + 12^2 + 16^2 = 1056,$$

exactly as in Example 2.12.

The number of walks on the Dynkin diagram of type \hat{A}_7 with 6 steps starting and ending at 0 is the coefficient of z^2 in

$$(1 + z)^6 |_{z^4 = 1} = 1 + 6z + 15z^2 + 20z^3 + 15 + 6z + z^2,$$

which is 20. The number of walks starting at 0 and ending at 4 is the coefficient of z in this expression, which is $6 + 6 = 12$.

24
2.3 The cyclic subgroup C_∞

Let C_∞ denote the cyclic subgroup of SU_2 generated by

$$g = \left(\begin{array}{cc} \zeta^{-1} & 0 \\ 0 & \zeta \end{array} \right) \in SU_2,$$

where $\zeta = e^{i\theta}$ for any $\theta \in \mathbb{R}$ such that ζ is not a root of unity. Then C_∞ has a natural action on $V^\otimes k$, and the irreducible C_∞-modules occurring in the modules $V^\otimes k$ are all one dimensional and are given by $C_\infty^{(k)} = C\nu_\ell$ for some $\ell \in \mathbb{Z}$, where $g\nu_\ell = \zeta^\ell \nu_\ell$ and $C_\infty^{(k)} \otimes C_\infty^{(m)} \cong C_\infty^{(k+m)}$. In particular, $V = C_\infty^{(-1)} \oplus C_\infty^{(1)}$, and $C_\infty^{(k)} \otimes V = C_\infty^{(k-1)} \oplus C_\infty^{(k+1)}$ for all ℓ. Thus, the representation graph $R_V(C_\infty)$ is the Dynkin diagram \tilde{A}_∞.

\begin{equation}
C_\infty: \quad \begin{array}{cccccccc}
\bullet & -2 & \bullet & -1 & \bullet & 0 & \bullet & 1 & \bullet & 2 & \bullet & 3 & \cdots
\end{array} \quad (\tilde{A}_\infty)
\end{equation}

Now $g\nu_r = \zeta^{-2|r|}\nu_r$, for all $r \in \{-1, 1\}^k$, where $|r|$ is as in (2.2). The arguments in the previous section can be easily adapted to show the following.

Theorem 2.21. Let $Z_k = Z_k(C_\infty) = \text{End}_{C_\infty}(V^\otimes k)$.

(a) $B^k(C_\infty) = \{E_{r,s} \mid r, s \in \{-1, 1\}^k, |r| = |s|\}$ is a basis for Z_k, where $E_{r,s}\nu_t = \delta_{s,t}\nu_r$ and $E_{r,s}E_{t,u} = \delta_{s,t}E_{r,u}$ for all $r, s, t, u \in \{-1, 1\}^k$.

(b) The irreducible modules for Z_k are labeled by $\Lambda_k(C_\infty) = \{k-2a \mid a = 0, 1, \ldots, k\}$. A basis for the irreducible Z_k-module $Z_k^{(k-2a)}$ is $\{\nu_r \mid r \in \{-1, 1\}^k, |r| = a\}$, and $\dim Z_k^{(k-2a)} = \binom{k}{a}$.

The module $Z_k^{(k-2a)}$ is also a C_∞-module, hence a $(C_\infty \times Z_k)$-bimodule.

(c) $\dim Z_k = \sum_{a=0}^{k} \binom{k}{a}^2 = \left(\binom{2k}{k} \right)$ = coefficient of z^k in $(1+z)^{2k}$.

(d) Z_k is isomorphic to the planar rook algebra P_k.

Remark 2.22. A word of explanation about part (d) is in order. The planar rook algebra P_k was studied in [FHIII], where it was shown (see [FHIII Prop. 3.3]) to have a basis of matrix units $\{X_{R,S} \mid R, S \subseteq \{1, \ldots, k\}, |R| = |S|\}$ such that $X_{R,S}X_{T,U} = \delta_{S,T}X_{R,U}$. Identifying the subset R of $\{1, \ldots, k\}$ with the k-tuple $r = (r_1, \ldots, r_k) \in \{-1, 1\}^k$ such $r_j = -1$ if $j \in R$ and $r_j = 1$ if $j \notin R$, it is easy to see that $Z_k(C_\infty) \cong P_k$ via the correspondence $E_{r,s} \mapsto X_{R,S}$.

Remark 2.23. As a module for the circle subgroup (maximal torus) $S^1 = \left\{ \left(\begin{array}{cc} e^{-it} & 0 \\ 0 & e^{it} \end{array} \right) \mid t \in \mathbb{R} \right\}$ of SU_2, V has the same decomposition $V = CV_{-1} \oplus CV_1$ into submodules (common eigenspaces) as it has for C_∞. Thus, the centralizer algebra $Z_k(S^1) \cong Z_k(C_\infty)$, and its structure and representations are also given by this theorem.
3 The Binary Dihedral Subgroups

Let \(D_n \) denote the binary dihedral subgroup of \(SU_2 \) of order \(4n \) generated by the elements \(g, h \in SU_2 \), where

\[
g = \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & \zeta \end{pmatrix}, \quad h = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},
\]

\(\zeta = \zeta_{2n} \), a primitive \((2n) \)th root of unity in \(\mathbb{C} \), and \(i = \sqrt{-1} \). The defining relations for \(D_n \) are

\[
g^{2n} = 1, \quad g^n = h^2, \quad h^{-1}gh = g^{-1}.
\]

Each of the nodes \(\ell = 0, 0', 1, 2, \ldots, n - 1, n, n' \) of the affine Dynkin diagram of type \(\hat{D}_{n+2} \) (see Section 4.1) corresponds to an irreducible \(D_n \)-module. For \(\ell = 1, \ldots, n - 1 \), let \(D_n^{(\ell)} \) denote the two-dimensional \(D_n \)-module on which the generators \(g, h \) have the following matrix representations,

\[
g = \begin{pmatrix} \zeta^{-\ell} & 0 \\ 0 & \zeta^{\ell} \end{pmatrix}, \quad h = \begin{pmatrix} 0 & i^{\ell} \\ i^{\ell} & 0 \end{pmatrix}.
\]

relative to the basis \(\{ v_{-\ell}, v_{\ell} \} \). For \(\ell = 0, 0', n, n' \), let the one-dimensional \(D_n \)-module \(D_n^{(\ell)} \) be as follows:

\[
D_n^{(0)} = \mathbb{C}v_0, \quad g v_0 = v_0, \quad h v_0 = v_0
\]

\[
D_n^{(0')}, \quad g v_{0'} = v_{0'}, \quad h v_{0'} = -v_{0'},
\]

\[
D_n^{(n)} = \mathbb{C}v_n, \quad g v_n = -v_n, \quad h v_n = i^n v_n
\]

\[
D_n^{(n')}, \quad g v_{n'} = -v_{n'}, \quad h v_{n'} = -i^n v_{n'}.
\]

In each case, we refer to the given basis as the “standard basis” for \(D_n^{(\ell)} \). The modules \(D_n^{(\ell)} \) for \(\ell = 0, 0', 1, 2, \ldots, n - 1, n, n' \) give the complete list of irreducible \(D_n \)-modules up to isomorphism.

Relative to the standard basis \(\{ v_{-1}, v_1 \} \) for the module \(V := D_n^{(1)} \), \(g \) and \(h \) have the matrix realizations displayed in (3.1), and \(V \) is the natural \(D_n \)-module of \(2 \times 1 \) column vectors.

Proposition 3.4. Tensor products of \(V \) with the irreducible modules \(D_n^{(\ell)} \) are given as follows:

(a) \(D_n^{(\ell)} \otimes V \cong D_n^{(\ell-1)} \oplus D_n^{(\ell+1)} \) for \(1 < \ell < n - 1 \);

(b) \(D_n^{(1)} \otimes V \cong D_n^{(0)} \oplus D_n^{(0)} \oplus D_n^{(2)} \);

(c) \(D_n^{(n-1)} \otimes V \cong D_n^{(n-2)} \oplus D_n^{(n)} \oplus D_n^{(n')} \);

(d) \(D_n^{(0)} \otimes V \cong D_n^{(1)} = V, \quad D_n^{(0')} \otimes V \cong D_n^{(1)} = V \);

(e) \(D_n^{(n)} \otimes V \cong D_n^{(n-1)}, \quad D_n^{(n')} \otimes V = D_n^{(n-1)} \).

This can be readily checked using the standard bases above. They are exactly the tensor product rules given by the McKay correspondence.

Assume \(s = (s_1, \ldots, s_k) \in \{-1, 1\}^k \), and let \(|s| = |\{ s_j \mid s_j = -1 \}| \) as in (2.2). On the vector \(\nu_s = v_{s_1} \otimes \cdots \otimes v_{s_k} \in V^{\otimes k} \), the generators \(g, h \) have the following action:

\[
g \nu_s = \zeta^{-2|s|} \nu_s, \quad h \nu_s = i^{|s|} \nu_{-s}.
\]

For two such \(k \)-tuples \(r \) and \(s \),

\[
k - 2|r| \equiv k - 2|s| \mod 2n \iff |r| \equiv |s| \mod n.
\]
Let
\[\Lambda_k^*(D_n) = \{ \ell \in \{0,1,\ldots,n\} \mid \ell \equiv k - 2a_\ell \mod 2n \text{ for some } a_\ell \in \{0,1,\ldots,k\} \} \]
\[\Lambda_k(D_n) = \Lambda_k^*(D_n) \cup \{ \ell' \mid \ell \in \Lambda_k^*(D_n) \cap \{0,n\} \}. \]

We will always assume \(a_\ell\) is minimal with that property. The set \(\Lambda_k(D_n)\) indexes the irreducible \(D_n\)-modules in \(\mathbb{V}^\otimes k\). In particular,

for \(D_n^{(\ell)}\) to occur in \(\mathbb{V}^\otimes k\) it is necessary that \(k - \ell \equiv 0 \mod 2\), \(3.8\)

and when \(k - \ell \equiv 0 \mod 2\) holds, then \(i^{k-\ell} = i^{\ell-k} = 1\) or \(-1\) depending on whether \(k - \ell \equiv 0\) or \(k - \ell \equiv 2 \mod 4\). Note also for \(\ell = 0, n\) that \(D_n^{(\ell)}\) occurs in \(\mathbb{V}^\otimes k\) with the same multiplicity as \(D_n^{(\ell)}\).

3.1 The centralizer algebra \(Z_k(D_n)\)

In this section, we investigate the centralizer algebra \(Z_k(D_n) = \text{End}_{D_n}(\mathbb{V}^\otimes k)\) for \(V = D_n^{(1)} = C_{v-1} \oplus C_{v1}\). The element \(g\) in \((3.1)\) generates a cyclic subgroup \(C_{2n}\) of order \(2n\), which implies that that \(\text{End}_{D_n}(\mathbb{V}^\otimes k) = Z_k(D_n) \subset Z_k(C_{2n}) = \text{End}_{C_{2n}}(\mathbb{V}^\otimes k)\). We will exploit that fact in our considerations.

We impose the following order on \(k\)-tuples in \((-1,1)^k\).

Definition 3.9. Say \(r \succeq s\) if \(|r| \leq |s|\), and if \(|r| = |s|\), then \(r\) is greater than or equal to \(s\) in the lexicographic order coming from the relation \(1 > -1\).

Example 3.10. \((1,1,-1,-1,1) \succ (1,-1,1,-1,1,-1)\).

3.2 A basis for \(Z_k(D_n)\)

We determine the dimension of \(Z_k(D_n)\) and a basis for it. It follows from Theorem \(2.7\)(a) that a basis for \(Z_k(C_{2n})\) is given by

\[\mathcal{B}^k(C_{2n}) = \left\{ E_{r,s} \mid r, s \in \{-1,1\}^k, |r| \equiv |s| \mod n \right\}, \]

where \(|r|, |s| \in \{0,1,\ldots,k\}\). Now

\[|r| = |s| \mod n \iff -r = k - |r| \equiv k - |s| = -s \mod n, \]

so \(E_{r,s} \in \mathcal{B}^k(C_{2n})\) if and only if \(E_{-r,-s} \in \mathcal{B}^k(C_{2n})\).

Theorem 3.13.

(a) \(Z_k(D_n) = \{ X \in Z_k(C_{2n}) \mid hX = Xh \}\).

(b) A basis for \(Z_k(D_n) = \text{End}_{D_n}(\mathbb{V}^\otimes k)\) is the set

\[\mathcal{B}^k(D_n) = \left\{ E_{r,s} + E_{-r,-s} \mid r, s \in \{-1,1\}^k, r \succ -r, |r| \equiv |s| \mod n \right\}. \]

(c) The dimension of \(Z_k(D_n)\) is given by

\[\dim Z_k(D_n) = \frac{1}{2} \dim Z_k(C_{2n}) = \frac{1}{2} \sum_{0 \leq a < b \leq k \atop a \equiv b \mod n} \binom{k}{a} \binom{k}{b} \]

\[= \frac{1}{2} \left(\text{coefficient of } z^k \text{ in } (1+z)^{2k} \big|_{z^n=1} \right). \]
Proof. Since $Z_k(D_n) \subseteq Z_k(C_{2n})$, we may assume that $X \in Z_k(D_n)$ can be written as

$$X = \sum_{|r|=|s| \mod n} X_{r,s}E_{r,s},$$

and that X commutes with the generator g of D_n in (3.1). In order for X to belong to $Z_k(D_n)$, $hX = Xh$ must hold, as asserted in (a). Applying both sides of $hX = Xh$ to v_r, we obtain

$$\sum_{|r|=|s| \mod n} i^k X_{r,s}v_{-r} = \sum_{|t|=|s| \mod n} i^k X_{t,-s}v_t.$$

The coefficient $i^k X_{r,s}$ of v_{-r} on the left is nonzero if and only if the coefficient $i^k X_{-r,-s}$ of v_{-r} on the right is nonzero, and they are equal. Hence, $Xh = Xh$ if and only if $X_{-r,-s} = X_{r,s}$ for all $|r| = |s| \mod n$. Therefore, we have

$$X = \sum_{|r|=|s| \mod n} X_{r,s}(E_{r,s} + E_{-r,-s}).$$

Thus, the set $B^k(D_n)$ in (3.43) spans $Z_k(D_n)$, and since it is clearly linearly independent, it is a basis for $Z_k(D_n)$.

Part (c) is apparent from (3.11), part (b), and Theorem 2.7 (c), which says that $\dim Z_k(C_{2n})$ is the coefficient of z^k in $(1 + z)^{2k}$ |$z^n=1$. \hfill \Box

Example 3.16. Assume $k = 4$ and $n = 5$. Then $\dim Z_k(D_5)$ is $\frac{1}{2}$ the coefficient of z^4 in

$$(1 + z)^8 \mid z^5 = 1 + 8z + 28z^2 + 56z^3 + 70z^4 + 56 + 28z + 8z^2 + z^3,$$

so that $\dim Z_4(D_5) = \frac{1}{2} \cdot 70 = 35$. Since z^4 appears only once in $(1 + z)^8 \mid z^n=1$ for $n \geq 5$, in fact $\dim Z_4(D_n) = 35$ for all $n \geq 5$.

Now when $n = 4 = k$, $\dim Z_k(D_n)$ is $\frac{1}{2}$ the coefficient of $z^4 = z^0 = 1$ in

$$(1 + z)^8 \mid z^4 = 1 + 8z + 28z^2 + 56z^3 + 70 + 56z + 28z^2 + 8z^3 + 1.$$

Thus, $\dim Z_4(D_4) = \frac{1}{2}(1 + 70 + 1) = 36$.

3.3 Copies of $D_n^{(\ell)}$ in $V^{\otimes k}$ for $\ell \in \{1, \ldots, n-1\}$

The next result locates copies of $D_n^{(\ell)}$ inside $V^{\otimes k}$ when $1 \leq \ell \leq n-1$.

Theorem 3.17. Assume $\ell \in \Lambda_k(D_n)$ and $1 \leq \ell \leq n-1$. Set

$$K_\ell = \left\{ r \in \{-1,1\}^k \mid k - 2|r| \equiv \ell \mod 2n, \ r > -r \right\}. \tag{3.18}$$

(i) For each $r \in K_\ell$, the vectors $i^{\ell-k}v_r$, v_r determine a standard basis for a copy of $D_n^{(\ell)}$.

(ii) For $r, s \in K_\ell$, the transformation $e_{r,s} := E_{r,s} + E_{-r,-s} \in Z_k(D_n) = \text{End}_{D_n}(V^{\otimes k})$ satisfies

$$e_{r,s}(v_t) = \delta_{s,t}v_r, \quad e_{r,s}(i^{\ell-k}v_t) = \delta_{s,t}i^{\ell-k}v_{r-t}.$$

(iii) For $r, s, t, u \in K_\ell$, $e_{r,s}e_{t,u} = \delta_{s,t}e_{r,u}$ holds, so $\text{span}_C\{e_{r,s} \mid r, s \in K_\ell\}$ can be identified with the matrix algebra $M_{d_\ell}(C)$, where $d_\ell = |K_\ell|$.
(iv) $B^\ell_k := \text{span}_C\{i^{\ell-k}v_r, v_r | r \in K_\ell\}$ is an irreducible bimodule for $D_n \times M_{d_\ell}(C)$.

Proof. (i) Since $r \in K_\ell$ satisfies $k - 2|r| \equiv \ell \mod 2n$, we have
\[
g(i^{\ell-k}v_r) = \zeta^{-\ell}(i^{\ell-k}v_r) \quad \text{and} \quad g v_r = \zeta^\ell v_r,
\]
so \{i^{\ell-k}v_r, v_r\} forms a standard basis for a copy of D^ℓ_k.

Part (ii) can be verified by direct computation.

For (iii) note that if $s \in K_\ell$, then $-s \not\in K_\ell$, as otherwise $-\ell = k - 2| -s| \equiv \ell \mod 2n$, which is impossible for $\ell \in \{1, \ldots, n - 1\}$. Thus, for $r, s, t, u \in K_\ell$,
\[
e_{s,t} e_{r,u} = \delta_{s,t} e_{r,u} + \delta_{-s,t} e_{-r,u} = \delta_{s,t} e_{r,u}.
\]

For (iv), assume $S \not= 0$ is a sub-bimodule of B^ℓ_k, and $0 \not= u = \sum_{r \in K_\ell} (\gamma_r i^{\ell-k}v_r + \gamma_t v_r) \in S$. Then since $k - 2|r| \equiv \ell \mod 2n$, $g u - \zeta^{-\ell}u = (\zeta^\ell - \zeta^{-\ell}) \sum_{r \in K_\ell} \gamma_r v_r \in S$. As $\zeta^\ell - \zeta^{-\ell} \not= 0$, we have that $w := \sum_{r \in K_\ell} \gamma_r v_r \in S$. If $\gamma_u \not= 0$ for some $u \in K_\ell$, then $e_{r,u} w = \gamma_u v_t \in S$ for all $t \in K_\ell$. But then $hv_t = i^{\ell}v_{-t} \in S$ for all such t as well. This implies $S = B^\ell_k$. If instead $\gamma_u = 0$ for all $u \in K_\ell$, then $u = \sum_{r \in K_\ell} \gamma_r i^{\ell-k}v_r$. There is some $\gamma_s \not= 0$, and applying $e_{t,s}$ to u shows that $v_{-t} \in S$ for all $t \in K_\ell$. Applying h to those elements shows that $v_t \in S$ for all $t \in K_\ell$. Hence $S = B^\ell_k$ in this case also, and B^ℓ_k must be irreducible. \hfill \Box

3.4 Copies of D^ℓ_k in $V^\otimes k$ for $\ell \in \{0, 0', n, n'\}$

Throughout this section, let $\ell = 0, n$ and $\ell \in \Lambda_k(D_n)$. Let
\[
K_\ell = \left\{ r \in \{-1, 1\}^k \mid k - 2|r| \equiv \ell \mod 2n, \ r > -r \right\}
\]

(i) $C(\nu + i^{\ell-k}v_{-r}) \cong D^\ell_n$ and $C(\nu - i^{\ell-k}v_{-r}) \cong D^\ell_n$ for each $r \in K_\ell$.

(ii) For $r, s \in K_\ell$, the transformations
\[
e_{r,s}^\pm := \frac{1}{2} \left((E_{r,s} + E_{-r,-s}) \pm i^{\ell-k}(E_{r,-s} + E_{-r,s}) \right) \in Z_k(D_n)
\]

satisfy
\[
e_{r,s}^\pm(v_t \pm i^{\ell-k}v_{-t}) = \delta_{s,t}(v_r \pm i^{\ell-k}v_{-r})
\]
\[
e_{r,s}^\pm(v_t \mp i^{\ell-k}v_{-t}) = 0.
\]

(iii) For $r, s, t, u \in K_\ell$, $e_{r,s}^\pm e_{t,u}^\pm = \delta_{s,t} e_{r,u}^\pm$ and $e_{r,s}^\pm e_{t,u}^\pm = 0$ hold. Therefore span$_C\{e_{r,s}^\pm\}$ can be identified with the matrix algebra $M_{d_\ell}(C)^\pm$, where $d_\ell = |K_\ell|$.

(iv) $B^\ell_k := \text{span}_C\{\nu + i^{\ell-k}v_{-r} | r \in K_\ell\}$ and $B^\ell_k := \text{span}_C\{\nu - i^{\ell-k}v_{-r} | r \in K_\ell\}$ are irreducible bimodules for $D_n \times M_{d_\ell}(C)^\pm$.

29
Correspondingly, \(Z \in \mathfrak{g} \) in this example, we decompose Example 3.25.

3.5 Example \(V^\otimes 4 \)

In this example, we decompose \(V^\otimes 4 \) for \(n \geq 4 \).

First, suppose \(n \geq 5 \). Then using the results in Proposition 3.4, we have

\[
V^\otimes 4 = 3 \cdot D_n^{(0)} \oplus 3 \cdot D_n^{(0)} \oplus 3 \cdot D_n^{(2)} \oplus D_n^{(4)}.
\]

Correspondingly, \(Z_k(D_n) \) decomposes into matrix blocks according to

\[
Z_k(D_n) \cong M_3(\mathbb{C}) \oplus M_3(\mathbb{C}) \oplus M_4(\mathbb{C}) \oplus M_1(\mathbb{C}),
\]

and \(\dim Z_k(D_n) = 3^2 + 3^2 + 4^2 + 1^2 = 35 \) as in Example 3.16. More explicitly we have for \(n \geq 5 \) the following:

(i) Let \(\ell = k = 4 \), and set \(q = (1, 1, 1, 1) \). Then \(i^{\ell-k} = 1 \), so \(\{v_q, v_q\} \) gives a standard basis for a copy of \(D_n^{(4)} \), and \(\{e_{q,q} := E_{q,q} + E_{q,-q}\} \) is a basis for \(M_1(\mathbb{C}) \).

(ii) Let \(\ell = 2 \), and set \(r = (1, 1, 1, -1) \), \(s = (1, 1, -1, 1) \), \(t = (1, -1, 1, 1) \), and \(u = (-1, 1, 1, 1) \).

Then the pair \(\{-v_\lambda, v_\lambda\} \) for \(\lambda = r, s, t, u \) determines a standard basis for a copy of \(D_n^{(2)} \). The maps \(\epsilon_{\lambda,\mu} := E_{\lambda,\mu} + E_{\lambda,-\mu} \) for \(\lambda, \mu \in \{r, s, t, u\} \) give a matrix unit basis for \(M_4(\mathbb{C}) \).

(iii) Let \(\ell = 0 \), and set \(v = (1, 1,-1, -1) \), \(w = (1, -1, 1, -1) \), and \(x = (1, -1, -1, 1) \). Then since \(i^{\ell-k} = 1 \), the vector \(v_\lambda - v_{-\lambda} \) gives a basis for a copy of \(D_n^{(0)} \) for \(\lambda \in \{v, w, x\} \). The transformations \(\epsilon_{\lambda,\mu} = \frac{1}{2} \left((E_{\lambda,\mu} + E_{\lambda,-\mu}) - (E_{\lambda,\mu} + E_{\lambda,-\mu}) \right) \) for \(\lambda, \mu \in \{v, w, x\} \) form a matrix unit basis for \(M_3(\mathbb{C}) \) (in the notation of Theorem 3.19). Similarly, the vector \(v_\lambda + v_{-\lambda} \) gives a basis for a copy of \(D_n^{(0)} \), and the maps \(\epsilon_{\lambda,\mu} = \frac{1}{2} \left((E_{\lambda,\mu} + E_{\lambda,-\mu}) + (E_{\lambda,\mu} + E_{\lambda,-\mu}) \right) \) for \(\lambda, \mu \in \{v, w, x\} \) form a matrix unit basis for \(M_3(\mathbb{C}) \).
In (i) and (ii), the space $B_{1}^{(t)} = \text{span}_{C} \{ v_{\pm \lambda} \}$, as λ ranges over the appropriate indices, is an irreducible bimodule for $D_{n} \times \mathbb{Z}_{k}(D_{n})$. In (iii), $B_{1}^{(0)} = \text{span}_{C} \{ v_{\lambda} + v_{-\lambda} \}$ and $B_{4}^{(0)} = \text{span}_{C} \{ v_{\lambda} - v_{-\lambda} \}$ are irreducible $(D_{n} \times \mathbb{Z}_{k}(D_{n}))$-bimodules in $V^{\otimes 4}$. Therefore, as a $D_{n} \times \mathbb{Z}_{k}(D_{n})$-bimodule $V^{\otimes 4}$ decomposes into irreducible bimodules of dimensions 2, 8, 3, 3.

Suppose now that $n = 4$. Then $V^{\otimes 4} = 3 \cdot D_{4}^{(4)} \oplus 3 \cdot D_{4}^{(0)} \oplus 4 \cdot D_{4}^{(2)} \oplus D_{4}^{(4)} \oplus D_{4}^{(4)}$, and $\mathbb{Z}_{k}(D_{4}) \cong M_{3}(C) \oplus M_{3}(C) \oplus M_{4}(C) \oplus M_{1}(C) \oplus M_{1}(C)$, which has dimension 36 (compare Example 3.16). The only change is in (i), where $\{ v_{q} - v_{-q} \}$ is a basis for a copy of $D_{4}^{(4)}$ and $\{ v_{q} + v_{-q} \}$ is a basis for a copy of $D_{4}^{(4)}$. In the first case, $e_{q,a} = \frac{1}{2} (\langle E_{a} + E_{-a} \rangle - \langle E_{a} - E_{-a} \rangle)$ gives a basis for $M_{1}(C)^{-}$, while in the second, $e_{q,a}^{+} = \frac{1}{2} (\langle E_{a} + E_{-a} \rangle + \langle E_{a} - E_{-a} \rangle)$ for $M_{1}(C)^{+}$.

3.6 A diagram basis for D_{n}

The basis $\{ E_{r,s} + E_{-r,-s} \} | r,s \in \{-1,1\}^{k}, r \succ -r, |r| \equiv |s| \text{ mod } n \}$ of matrix units can be viewed diagrammatically. If $r = (r_{1}, \ldots, r_{k}) \in \{-1,1\}^{k}$ and $s = (s_{1}, \ldots, s_{k}) \in \{-1,1\}^{k}$, let $d_{r,s}$ be the diagram on two rows of k vertices labeled by 1, 2, \ldots, k on top and 1', 2', \ldots, k' on bottom. Mark the ith vertex on top with + if $r_{i} = 1$ and with − if $r_{i} = -1$. Similarly, mark the jth vertex on the bottom with + if $s_{j} = 1$ and with − if $s_{j} = -1$. The positive and negative vertices correspond to a set partition of $\{1, \ldots, k, 1', \ldots, k'\}$ into two parts. Draw edges in the diagram so that the + vertices form a connected component and the − vertices form a connected component. For example, if $r = (-1, -1, 1, -1, 1, 1, -1)$ and $s = (1, -1, -1, -1, 1, -1, 1, -1)$, then the corresponding diagram and set partition are

Two diagrams are equivalent if they correspond to the same underlying set partition. Furthermore, switching the + signs and − signs give the same diagram, since $d_{r,s} = d_{-r,-s}$.

If d is any diagram corresponding to a set partition of $\{1, \ldots, k, 1', \ldots, k'\}$ into two parts, then d acts on $V^{\otimes k}$ by $d_{v} = \sum_{t \in \{-1,1\}^{k}, u \in \{-1,1\}^{k}} d_{u}^{t} v_{t}$ for $t = (u_{1}, \ldots, u_{k})$ and $u = (u_{1}, \ldots, u_{k}) \in \{-1,1\}^{k}$ with

$$
\begin{align*}
\hat{d}_{u}^{t} &= \left\{
\begin{array}{ll}
1 & \text{if } u_{a} = u_{b} \text{ if and only if } a \text{ and } b \text{ are in the same block of } d, \\
0 & \text{otherwise}
\end{array} \right.
\end{align*}
$$

for $a, b \in \{1, \ldots, k, 1', \ldots, k'\}$. In this notation \hat{d}_{u}^{t} denotes the (t,u)-entry of the matrix of d on $V^{\otimes k}$ with respect to the basis of simple tensors. It follows from this construction that $e_{r,s} = E_{r,s} + E_{-r,-s}$ and $d_{r,s}$ have the same action on $V^{\otimes k}$ and so are equal. Note that in the example above, we have

$$
\begin{align*}
d_{r,s} &\equiv (v_{a} \otimes v_{b} \otimes v_{b} \otimes v_{b} \otimes v_{a} \otimes v_{b} \otimes v_{b} \otimes v_{b} \otimes v_{a} \otimes v_{b}) = v_{b} \otimes v_{b} \otimes v_{a} \otimes v_{b} \otimes v_{b} \otimes v_{b} \otimes v_{a} \otimes v_{a} \otimes v_{b},
\end{align*}
$$

for $\{a, b\} = \{-1, 1\}$ and $d_{r,s}$ acts as 0 on all other simple tensors.

The diagrams multiply as matrix units. Let $b(d)$ and $t(d)$ denote the set partitions imposed by d on the bottom and top rows of d, respectively. If d_{1} and d_{2} are diagrams, then

$$
d_{1} d_{2} = \delta_{b(d_{1}), t(d_{2})} d_{3},
$$

31
where d_3 is the diagram given by placing d_1 on top of d_2, identifying $b(d_1)$ with $t(d_2)$, and taking d_3 to be the connected components of the resulting diagram. For example,

If the set partitions in the bottom of d_1 do not match exactly with the set partitions of the top of d_2 then this product is 0. Note that the set partitions must match, but the $+$ and $-$ labels might be reversed.

For $d_{r,s}$ to belong to the centralizer algebra $Z_k(D_n)$, we must have $r, s \in K_\ell$. For a block B in a set partition diagram d we let $t(B) = |B \cap \{1, \ldots, k\}|$ and $b(B) = |B \cap \{1', \ldots, k'\}|$. Then $r, s \in K_\ell$ if and only if $|r| \equiv |s| \equiv \frac{1}{2}(k - \ell) \mod n$ which is equivalent to

$$t(B) \equiv b(B) \mod n \quad \text{for each block } B \text{ in } d. \quad (3.27)$$

Example 3.28. Recall from Example 3.16 that $\dim Z_4(D_4) = 36$, and the diagrammatic basis is given by diagrams on two rows of 4 vertices each that partition the vertices into ≤ 2 blocks B that satisfy $t(B) \equiv b(B) \mod 4$. They are

(a) \[\text{ has one block } B \text{ with } t(B) = b(B) = 4.\]

(b) \[\text{ has } t(B_1) = 4 \equiv 0 \equiv b(B_1) \mod 4 \text{ and } t(B_2) = 0 \equiv 4 = b(B_2) \mod 4.\]

(c) There are 16 diagrams $d = B_1 \sqcup B_2$ in which B_1 has 3 vertices in each row and B_2 has 1 vertex in each row:

\[\ldots(12 \text{ more})\ldots\]

(d) There are 18 diagrams $d = B_1 \sqcup B_2$ in which both blocks have 2 vertices in each row:

\[\ldots(5 \text{ more})\ldots\]

\[\ldots(5 \text{ more})\ldots\]

3.7 Irreducible modules for $Z_k(D_n)$

Theorem 3.29. Assume $\ell \in \Lambda_k^*(D_n)$, and let $a_\ell \in \{0, 1, \ldots, k\}$ be minimal such that $\ell \equiv k - 2a_\ell \mod 2n$.
(i) For $\ell \in \{1, \ldots, n-1\}$,

$$Z_k^{(\ell)} = \mathbb{Z}_k(\mathbb{D}_n)^{(\ell)} := \text{span}_\mathbb{C}\{v_t \mid t \in K_\ell\},$$

where K_ℓ is as in (3.18), is an irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-module, and

$$\dim Z_k^{(\ell)} = \sum_{v_0 \leq b \leq k \atop b = a_\ell \mod n} \binom{k}{b} = \text{coefficient of } z^{a_\ell^2} \text{ in } (1 + z)^k|_{z = n^{-1}}.$$ (3.31)

(ii) For $\ell \in \{0, n\}$,

$$Z_k^{(\ell)} = \mathbb{Z}_k(\mathbb{D}_n)^{(\ell)} := \text{span}_\mathbb{C}\{v_t + i^{\ell-k}v_{-t} \mid t \in K_\ell\},$$

where K_ℓ is as in (3.20), are irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-modules, and

$$\dim Z_k^{(\ell)} = \dim Z_k^{(\ell')} = \frac{1}{2} \sum_{v_0 \leq b \leq k \atop b = a_\ell \mod n} \binom{k}{b} = \frac{1}{2} \left(\text{coefficient of } z^{a_\ell^2} \text{ in } (1 + z)^k|_{z = n^{-1}}\right).$$ (3.33)

Up to isomorphism, the modules in (i) and (ii) are the only irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-modules.

Proof. Assume initially that $\ell \in \{1, \ldots, n-1\}$ and $\ell \in \Lambda^*_k(\mathbb{D}_n)$. Let $Z_k^{(\ell)}$ be as in (3.30). For all $r, s, t \in K_\ell$, $e_{r,s}v_t = \delta_{s,t}v_r$, where $e_{r,s} = E_{r,s} + E_{-r,-s} \in \mathbb{Z}_k(\mathbb{D}_n)$ is as in Theorem 3.17 (ii). Thus, $Z_k^{(\ell)}$ is the unique irreducible module (up to isomorphism) for the matrix subalgebra of $\mathbb{Z}_k(\mathbb{D}_n)$ having basis the matrix units $e_{r,s}, r, s \in K_\ell$. Since the other basis elements in the basis $\mathcal{B}_k^\text{mat}(\mathbb{D}_n)$ (in Corollary 3.21) act trivially on the vectors in $Z_k^{(\ell)}$, we have that $Z_k^{(\ell)}$ is an irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-module. Since $k - 2|t| \equiv \ell \mod 2n$ for all $t \in K_\ell$, we have $|t| \equiv a_\ell \mod 2$. Therefore

$$\dim Z_k^{(\ell)} = \sum_{v_0 \leq b \leq k \atop b = a_\ell \mod n} \binom{k}{b} = \text{coefficient of } z^{a_\ell^2} \text{ in } (1 + z)^k|_{z = n^{-1}}$$

as claimed in (i). Observe $W_k^{(\ell)} := \text{span}_\mathbb{C}\{i^{\ell-k}v_{-t} \mid t \in K_\ell\}$ is also a $\mathbb{Z}_k(\mathbb{D}_n)$-module isomorphic to $Z_k^{(\ell)}$ by Theorem 3.17 (ii), and the $(\mathcal{D}_n \times \mathbb{Z}_k(\mathbb{D}_n))$-bimodule $\mathcal{B}_k^{(\ell)}$ in that theorem is the sum $\mathcal{B}_k^{(\ell)} = W_k^{(\ell)} \oplus Z_k^{(\ell)}$.

Now assume $\ell = 0, n$ and $\ell \in \Lambda^*_k(\mathbb{D}_n)$. Let $Z_k^{(0)}$ and $Z_k^{(n)}$ be as in (3.32). Since according to Theorem 3.19

$$e_{r,s}^\pm(v_t + i^{\ell-k}v_{-t}) = \delta_{s,t}(v_r + i^{\ell-k}v_{-r}), \quad e_{r,s}^\pm(v_t - i^{\ell-k}v_{-t}) = 0$$

for $e_{r,s}^\pm := \frac{1}{2}(E_{r,s} + E_{-r,-s} \pm i^{\ell-k}(E_{r,-s} + E_{-r,s}))$ with $r, s \in K_\ell$, and since all other elements of the basis $\mathcal{B}_k^\text{mat}(\mathbb{D}_n)$ act trivially on $Z_k^{(0)}$ and $Z_k^{(n)}$, we see that they are irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-modules. Moreover, since $|t| \equiv a_\ell$ for all $t \in K_\ell$, they have dimension

$$\frac{1}{2} \sum_{v_0 \leq b \leq k \atop b = a_\ell \mod n} \binom{k}{b} = \frac{1}{2} \left(\text{coefficient of } z^{a_\ell^2} \text{ in } (1 + z)^k|_{z = n^{-1}}\right).$$

As the sum of the squares of the dimensions of the modules in (i) and (ii) adds up to $\dim \mathbb{Z}_k(\mathbb{D}_n)$, these are all the irreducible $\mathbb{Z}_k(\mathbb{D}_n)$-modules up to isomorphism. \qed
Remark 3.35. For $\ell \equiv 1 \mod 4$, 3.8 The infinite binary dihedral subgroup D_∞ of SU$_2$

Let D_∞ denote the subgroup of SU$_2$ generated by

\[
g = \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & \zeta \end{pmatrix}, \quad h = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},
\]

(3.37)
where \(\zeta = e^{i\theta}, \theta \in \mathbb{R}, i = \sqrt{-1}, \) and \(\zeta \) is not a root of unity. Then the following relations hold in \(D_\infty \):
\[
h^4 = 1, \quad h^{-1}gh = g^{-1}, \quad g^n \neq 1 \quad \text{for} \quad n \neq 0.
\]

For \(\ell = 1, 2, \ldots \), let \(D^{(\ell)}_\infty \) denote the two-dimensional \(D_\infty \)-module on which the generators \(g, h \) have the following matrix representations:
\[
g = \begin{pmatrix} \zeta^{-\ell} & 0 \\ 0 & \zeta^\ell \end{pmatrix}, \quad h = \begin{pmatrix} 0 & \zeta^\ell \\ \zeta^{-\ell} & 0 \end{pmatrix}.
\]
relative to the basis \(\{v_-, v_0\} \). In particular, \(V = D^{(1)}_\infty \). For \(\ell = 0, 0', \) let the one-dimensional \(D_\infty \)-module \(D^{(\ell)}_n \) be given by
\[
D^{(0)}_\infty = \mathbb{C}v_0, \quad g v_0 = v_0, \quad h v_0 = v_0 \quad (3.39)
\]
\[
D^{(0')}_\infty = \mathbb{C}v_0', \quad g v_0' = v_0', \quad h v_0' = -v_0'. \quad (3.40)
\]

Proposition 3.41. Tensor products of \(V \) with the irreducible modules \(D^{(\ell)}_\infty \) decompose as follows:

(a) \(D^{(\ell)}_\infty \otimes V \cong D^{(\ell-1)}_\infty \oplus D^{(\ell+1)}_\infty \) for \(1 < \ell < \infty \);

(b) \(D^{(1)}_\infty \otimes V \cong D^{(0')}_\infty \oplus D^{(0)}_\infty \oplus D^{(2)}_\infty \);

(c) \(D^{(0)}_\infty \otimes V \cong D^{(1)}_\infty = V, \quad D^{(0')}_\infty \otimes V \cong D^{(1)}_\infty = V. \)

The representation graph \(\mathcal{R}_V(D_\infty) \) of \(D_\infty \) is the Dynkin diagram \(D_\infty \) (see Section 4.1), where each of the nodes \(\ell = 0, 0', 1, 2, \ldots \) corresponds to one of these irreducible \(D_\infty \)-modules. The arguments in previous sections can be adapted to show the next result.

Theorem 3.42. Let \(Z_k(D_\infty) = \text{End}_{D_\infty}(V^\otimes k) \).

(a) \(Z_k(D_\infty) = \{X \in Z_k(C_\infty) \mid hX = Xh\} \).

(b) A basis for \(Z_k(D_\infty) = \text{End}_{D_\infty}(V^\otimes k) \) is the set
\[
B^k(D_\infty) = \left\{ E_{r,s} + E_{-r,-s} \mid r,s \in \{-1,1\}^k, \ r \succ -r, \ |r| = |s| \right\}, \quad (3.43)
\]
where \(r \succ -r \) is the order in Definition 3.9.

(c) The dimension of \(Z_k(D_\infty) \) is given by
\[
\dim Z_k(D_\infty) = \frac{1}{2} \dim Z_k(C_\infty) = \frac{1}{2} \left(\begin{array}{c} 2k \\ k \end{array} \right) = \left(\begin{array}{c} 2k - 1 \\ k \end{array} \right) \quad (3.44)
\]
\[
= \frac{1}{2} \left(\text{coefficient of } z^k \text{ in } (1+z)^{2k} \right).
\]

(d) For \(\ell = 0, 1, 2, \ldots, k \) such that \(k - \ell \) is even, let
\[
\mathcal{K}_\ell = \left\{ r \in \{-1,1\}^k \mid k - 2|r| = \ell \right\} = \left\{ r \in \{-1,1\}^k \mid |r| = \frac{1}{2}(k - \ell) \right\}, \quad (3.45)
\]
(i) When \(1 \leq \ell \leq k \), then \(Z_k^{(\ell)} = Z_k(D_\infty)^{(\ell)} = \text{span}_C\{v_\ell \mid \ell \in \mathcal{K}_\ell\} \) is an irreducible \(Z_k(D_\infty) \)-module with
\[
\dim Z_k^{(\ell)} = \binom{k}{b} \quad \text{where} \quad b = \frac{1}{2}(k - \ell). \quad (3.46)
\]
For all \(r,s,t \in \mathcal{K}_\ell, \ e_{r,s}v_t = \delta_{st}v_r, \) where \(e_{r,s} = E_{r,s} + E_{-r,-s} \in Z_k(D_\infty). \)
(ii) When $\ell = 0$ (necessarily k is even), then
\[
Z_k^{(0)} = \text{span}_\mathbb{C}\{v_t + i^{-k}v_{-t} \mid t \in \tilde{K}_0\} \text{ and } Z_k^{(0')} = \text{span}_\mathbb{C}\{v_t - i^{-k}v_{-t} \mid t \in \tilde{K}_0\},
\]
are irreducible $Z_k(D_\infty)$-modules with dimensions
\[
\dim Z_k^{(0)} = \dim Z_k^{(0')} = \frac{1}{2} \binom{k}{b} \quad \text{where } b = \frac{1}{2} k, \tag{3.47}
\]
and
\[
e_{r,s}^+(v_t \pm i^{-k}v_{-t}) = \delta_{s,t}(v_r \pm i^{-k}v_{-r}), \quad e_{r,s}^-(v_t \pm i^{-k}v_{-t}) = 0
\]
for $e_{r,s}^\pm := \frac{1}{2} ((E_{r,s} + E_{-r,-s}) \pm i^{-k}(E_{r,-s} + E_{-r,s}))$ with $r, s \in \tilde{K}_0$.

(c) $Z_k(D_\infty) \cong Q_k$, where Q_k is the subalgebra of the planar rook algebra P_k having basis

(i) $\{X_{R,S} \mid 0 \leq |R| = |S| \leq \frac{1}{2}(k-1)\}$ when k is odd;
(ii) $\{X_{R,S} \mid 0 \leq |R| = |S| \leq \frac{1}{2}(k-2)\} \cup \{X_{\pm R, \pm S} \mid |R| = |S| = \frac{1}{2} k, R > -R, S > -S\}$ when k is even;

where the $X_{R,S}$ for $R, S \subseteq \{1, \ldots, k\}$ are the matrix units in Remark 2.22, and \succ is the order coming from the order in Definition 3.9 and the identification of a subset R with the tuple $r \in \{-1, 1\}^k$.

Remark 3.48. In Remark 2.22, we identified a subset $R \subseteq \{1, \ldots, k\}$ with the k-tuple $r = (r_1, \ldots, r_k)$ such that $r_j = -1$ if $j \in R$ and $r_j = 1$ if $j \notin R$. The element $e_{r,s} = E_{r,s} + E_{-r,-s}$ in part (b) of this theorem has the property that $|r| = |s|$ and $r \succ -r$. Therefore, $|R| = |r|$ (the number of -1s in r) is less than or equal to $|s|$ (the number of -1s in $-r$) by the definition of \succ, and $|R| \leq \frac{1}{2} k$. Thus, when k is odd, sending each such $e_{r,s}$ to the corresponding matrix unit $X_{R,S}$ will give the desired isomorphism in part (e). When k is even,

\[
\left\{ e_{r,s} = E_{r,s} + E_{-r,-s} \mid r, s \in \{-1, 1\}^k, r \succ -r, \quad |r| = |s| < \frac{1}{2} k \right\}
\]
\[
\bigcup \left\{ e_{r,s}^\pm \mid r, s \in \{-1, 1\}^k, r \succ -r, \quad |r| = |s| = \frac{1}{2} k \right\}
\]

is a basis for $Z_k(D_\infty)$. Note that $\mathbb{C}e_{r,s}^+ \oplus \mathbb{C}e_{r,s}^- = \mathbb{C}e_{r,-s}^+ \oplus \mathbb{C}e_{r,-s}^-$, so we can assume $s \succ -s$. Then sending $e_{r,s}$ to $X_{R,S}$ when $|r| = |s| < \frac{1}{2} k$, and $e_{r,s}^\pm$ to $X_{\pm R, \pm S}$ when $|r| = |s| = \frac{1}{2} k$ gives the isomorphism in (e).

In the planar rook algebra P_k, the elements $X_{R,S}$ with $|R| = |S| = \frac{1}{2} k$ comprise a matrix unit basis of a matrix algebra of dimension $\binom{\frac{1}{2} k}{b}^2$ where $b = \frac{1}{2} k$. The subsets $\{X_{R,S} \mid R \succ -R, S \succ -S\}$ and $\{X_{-R,-S} \mid R \succ -R, S \succ -S\}$ each give a basis of a matrix algebra of dimension $\binom{\frac{1}{2} k}{b}^2$. The sum of those two matrix subalgebras is included in Q_k.

4 Dynkin Diagrams, Bratteli Diagrams, and Dimensions

4.1 Representation Graphs and Dynkin Diagrams

The representation graph R_G for a finite subgroup G of SU_2 is the corresponding extended affine Dynkin diagram of type $\hat{A}_{n-1}, \hat{D}_{n+1}, \hat{E}_6, \hat{E}_7, \hat{E}_8$. In the figures below, the label on the node is the
index of the representation, and the label above the node is its dimension. The trivial module is shown in blue and the defining module \(V \) is shown in red.

\[\begin{array}{c}
\text{SU}_2:
\begin{array}{c}
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \cdots
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{C}_n:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & \cdots & n-4 & n-3 & n-2
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{D}_n:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & \cdots & n-3 & n-2 & n-1
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{T}:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{O}:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{I}:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{C}_\infty:
\begin{array}{c}
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \cdots
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{D}_\infty:
\begin{array}{c}
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & \cdots
\end{array}
\end{array}
\end{array} \]

4.2 Bratteli Diagrams

The first few rows of the Bratteli diagrams \(\mathcal{B}_V(G) \) for finite subgroups \(G \) of \(\text{SU}_2 \) are displayed here. The nodes label the irreducible \(G \)-modules that appear in \(V^\otimes k \). The label below each node at level \(k \) is the multiplicity of the corresponding \(G \)-module in \(V^\otimes k \), which is also the dimension of the
corresponding module for $\mathbb{Z}_k(G)$ with that same label. The right-hand column contains the sum of the squares of these dimensions and equals $\dim \mathbb{Z}_k(G)$. An edge between level k and level $k + 1$ is highlighted if it cannot be obtained as the reflection, over level k, of an edge between level $k - 1$ and k. The non-highlighted edges correspond to the Jones basic construction discussed in Section 1.6. Note that the highlighted edges produce an embedding of the representation graph $\mathcal{R}_V(G)$ into the Bratteli diagram $\mathcal{B}_V(G)$.

Observe that C_5 and C_{10} have isomorphic Bratteli diagrams; they each correspond to Pascal’s triangle on a cylinder of “diameter” 5:
4.3 Dimensions

Using an inductive proof on the structure of the Bratteli diagram, we can compute the dimensions of the irreducible $\mathbb{Z}_k(G)$-modules. The dimension of the centralizer algebra $\mathbb{Z}_k(G)$ is the multiplicity of the trivial G-module (the blue node) at level $2k$. That dimension is also the sum of the squares of the irreducible G-modules occurring in $V^\otimes k$. We record $\dim \mathbb{Z}_k(G)$ for $G = T, O, I$ in the next result. The cyclic and dihedral cases can be found in Sections 3 and 4.

Theorem 4.1. For $k \geq 1$,

(a) $\dim \mathbb{Z}_k(T) = \frac{4^k + 8}{12}$ (**OEIS** Sequence A047849). For $k \geq 2$, the dimensions of the irreducible $\mathbb{Z}_k(T)$-modules, and thus also the multiplicities of the irreducible T-modules in $V^\otimes k$, are as shown in the following diagram:

(b) $\dim \mathbb{Z}_k(O) = \frac{4^k + 6 \cdot 2^k + 8}{24}$ (**OEIS** Sequence A007581). For $k \geq 2$, the dimensions of the irreducible $\mathbb{Z}_k(O)$-modules, and thus also the multiplicities of the irreducible O-modules in
\(\sqrt[\otimes k]{\text{modules}}, \) are as shown in the following diagram:

\[
\begin{align*}
 k &= 2n :
 & \quad \begin{array}{c}
 0 \\
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6
 \end{array} \\
 & \quad \frac{4^n + 6 \cdot 2^n + 8}{24} \quad \frac{3 \cdot 4^n + 6 \cdot 2^n}{24} \quad \frac{2 \cdot 4^n - 8}{24} \quad \frac{3 \cdot 4^n - 6 \cdot 2^n}{24} \quad \frac{4^n - 6 \cdot 2^n + 8}{24}
\end{align*}
\]

\[
\begin{align*}
 k &= 2n + 1 :
 & \quad \begin{array}{c}
 0 \\
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6
 \end{array} \\
 & \quad \frac{4^{n+1} + 6 \cdot 2^{n+1} + 8}{24} \quad \frac{2 \cdot 4^{n+1} - 8}{24} \quad \frac{4^{n+1} - 6 \cdot 2^{n+1} + 8}{24}
\end{align*}
\]

(c) \(\dim Z_k(I) = \frac{4^k + 12L_{2k} + 20}{60} \), where \(L_n \) is the Lucas number defined by \(L_0 = 2, L_1 = 1, \) and \(L_{n+2} = L_{n+1} + L_n \). For \(k \geq 6 \), the dimensions of the irreducible \(Z_k(I) \)-modules, and thus also the multiplicities of the irreducible \(I \)-modules in \(\sqrt[\otimes k]{\text{modules}} \), are as shown in the following diagram:

\[
\begin{align*}
 k &= 2n :
 & \quad \begin{array}{c}
 0 \\
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6
 \end{array} \\
 & \quad \frac{4^n + 12L_{2n} + 20}{60} \quad \frac{3 \cdot 4^n + 12L_{2n+1}}{60} \quad \frac{5 \cdot 4^n - 20}{60} \quad \frac{3 \cdot 4^n - 12L_{2n+1}}{60} \quad \frac{4 \cdot 4^n - 12L_{2n} + 20}{60}
\end{align*}
\]

\[
\begin{align*}
 k &= 2n + 1 :
 & \quad \begin{array}{c}
 0 \\
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6
 \end{array} \\
 & \quad \frac{4^{n+1} + 12L_{2n+1} + 20}{60} \quad \frac{2 \cdot 4^{n+1} + 12L_{2n+2} - 20}{60} \quad \frac{3 \cdot 4^{n+1} - 12L_{2n+1} + 20}{60} \quad \frac{4^{n+1} - 12L_{2n+2} + 20}{60}
\end{align*}
\]

Proof. The proofs of the dimension formulas for the irreducible modules are by induction on \(k \). The base cases are given in the Bratteli diagrams in the previous section. The inductive step is given by verifying that each dimension formula at level \(k \) (for \(k = 2n \) and \(k = 2n + 1 \)) equals the sum of the dimension formulas on level \(k - 1 \) connected to the given formula by an edge. Each of these is a straightforward calculation. The fact that \(\dim Z_k(G) = \dim Z_{2k}^{(0)} \) follows from (1.17). \(\square \)

References

