\[i_a = i_b + i_- \approx i_b \text{ (since } I_i \to \infty \Rightarrow i_- \to 0) \]

Ohm's Law: \[\frac{V_i - V_-}{R - X} = \frac{V_- - V_o}{X} \]

This is the current in the feedback loop, the resistance in the loop is \(X \), as required by the problem statement.

and \(V_- \approx V_+ = 0 \)

So \[\frac{V_i}{R - X} = -\frac{V_o}{X} \Rightarrow \]

\[V_o = \frac{X}{X - R} \cdot V_i \]