Preview Sheet for Test 1
Chapters 0, 1, 3, 4, 8, 27
Lectures from 1/24 through start of 2/14; Problem Sets 1, 2, and 3
(Focus on Gravimetric Analysis, Statistics, and Activity)

The test will be on Thursday, February 17, in Olin-Rice 350, starting at 8:30 a.m.
You will have 2 hours and 30 minutes to work on the exam.

Studying Strategies:

• Do extra problems at the ends of the chapters.
• Focus on your lecture notes and homework first, then look at the textbook. (See the course web page for class overheads and homework keys.)
• Come talk with me if you have any questions.
• If a topic was not covered in homework or in lecture, you are not responsible for it!

Test Format: 55 points based on mathematical questions, and 45 points based on short(er) and long(er) essay questions. Here’s a preview of the instructions:

Instructions before starting the test:

1. Write your name in the space above and on the backs of the other pages.
2. Your exam booklet should have 11 pages total, with questions on pages 2-7, formulas and constants on p. 8, statistical tables on p. 9, a table of activity coefficients on p. 10, and a periodic table on p. 11. Check to see you have 11 pages now. If you do not, ask for another copy of the exam.
3. You may use programmable calculators, but chemical data should not be stored in them.
4. If you need to solve a system of equations, you should demonstrate your work on paper—do not use algorithms built into your calculators. This is order to be fair to those who have not learned to use these functions on their calculators, or whose calculators lack this ability.
5. You are free to calculate means and standard deviations with your calculator, but do not use other statistical functions available on your calculator. Specifically, t-tests should be performed using the approaches presented in the class and in your text. This is to be fair to those who have not taken a statistics course, or who lack statistically savvy calculators.
6. You should always demonstrate your thought process in writing. You will be awarded credit only for clear, legible work.
7. You have 2 hours and 30 minutes to work on this exam.

Also note the formulas and constants you will be given on the exam (on back):
 Possibly Useful Information

\[PV = nRT \quad \bar{x} = \frac{\sum x_i}{n} \quad d_i = x_i - \bar{x} \quad s = \sqrt{\frac{\sum d_i^2}{n-1}} \quad y = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \]

\[z = \frac{x - \mu}{\sigma} \quad \mu = \bar{x} \pm \frac{z}{\sqrt{n}} \quad \mu = \bar{x} \pm t \frac{s}{\sqrt{n}} \quad t_{calc} = \frac{|\mu - \bar{x}| \sqrt{n}}{s} \]

\[t_{calc} = \frac{|\bar{x}_1 - \bar{x}_2|}{s_{pooled}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \quad s_{pooled} = \sqrt{\frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}} \quad t_{calc} = \frac{|d| \sqrt{n}}{s_d} \]

\[Q_{calc} = \frac{gap}{range} \quad \mu = \frac{1}{2} \sum C_i z_i^2 \quad A_i = [\bar{y}] \gamma_i \quad \log \gamma_i = \frac{-0.51 z_i^2 \sqrt{\mu}}{1 + \frac{\alpha \sqrt{\mu}}{305}} \]

\[N_A = 6.022 \times 10^{23} \text{ particle mol}^{-1} \quad R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1} \quad 1 \text{ atm} = 760 \text{ torr} \]

1 ppm = 1 in 10^6 \quad 1 ppb = 1 in 10^9 \quad 1 L = 1000 mL \quad T(K) = T(°C) + 273.15