II. Groups and Chemical Reactivity

* Group # = # of outermost (valence) e⁻’s

Group 1A: Alkali Metals

- Tend to lose 1 e⁻

 \[\text{eg } K \rightarrow K^+ + e^- \]

 \[\uparrow \]

 so typical charge (aka oxidation number) is +1
 or oxidation state.

Group 2A: Alkaline Earth Elements

- Tend to lose 2 e⁻’s

 \[\text{eg } \text{Ca} \rightarrow \text{Ca}^{2+} + 2e^- \]

 \[\therefore \text{ typical ox. state is } +2 \]

Group 8A: Noble Gases

- Don’t do squat (a fact we simply accept!)

* Atoms in chemical reactions seek to have as many e⁻’s as (i.e. become isoelectronic with) the nearest noble gas.

DEMO: \(\text{Ca(s)} + \text{H}_2\text{O}_\text{(e)} \rightarrow \ldots \)
DEMO: \(K(s) + H_2O(e) \rightarrow \ldots \)

Group 7A: Halogens

- Tend to gain or share 1\(e^-\)

eg \(F + e^- \rightarrow F^- \)

\(-1\)ox state

eg \(F \) (7 valence \(e^-\)'s)

Lewis (Chap.9) - arrange \(e^-\)'s

in (up to) 4 groups

so \(\cdot \cdot \cdot :F::F::F:\) (1 short of Ne)

\(\Rightarrow F + F \rightarrow F_2 \)

\(\cdot \cdot \cdot :F::F::F:\)

or \(\cdot \cdot \cdot :F-\cdot: \)

ox. state of zero

"shared e- pair" or "covalent bond"

\(F_2 \) eg of a molecule:

1. finite group of atoms
2. fixed composition
3. held together by 1 or more covalent bonds
Group 6A: Chalcogens
- Tend to gain or share 2 e⁻'s

\[\text{eg } \text{O} + 2\text{e}^- \rightarrow \text{O}^{2-} \]
-2 ox. state

\[\text{O} + \text{O} \rightarrow \text{O}_2 \]
0 ox. state

(in Chap 9/10, learn why \(\text{O}^{2-} \rightarrow \text{O}_2 \))

Reactivity: \(F > \text{O}, \text{Cl} > S, \text{etc.} \) (why in Chap 8)

III. Compounds and Nomenclature

\[\uparrow \]
- Contains more than 1 element
- Fixed composition

A. Binary (contains 2 elements)

- Metal + non-metal

\[\downarrow \text{e}^- \text{ transfer} \]
ionic compound or salt

1. Infinite (in principle) group of atoms
2. Fixed composition
3. Held together by ionic bonds (\(\Theta \leftrightarrow \Theta \))

\[\text{eg } 2\text{Na}(s) + \text{Cl}_2(g) \rightarrow 2\text{NaCl}(s) \]

O and all Group 7A elements are \underline{diatomic}
How do we know NaCl consists of ions?

DEMO: \(\text{NaCl(s)} \rightarrow \text{Na}^+ \text{(aq)} + \text{Cl}^- \text{(aq)} \)

\(\text{H}_2\text{O} \) solvates the \(\text{Na}^+ \) and \(\text{Cl}^- \), but doesn't react with them chemically.

NOMENCLATURE

1. Write cation, then anion
 - element name
 - "ide" suffix
2. Write charge if more than 1 ox state possible
 - eg \(\text{Fe}^{2+} \) iron(II), \(\text{Fe}^{3+} \) iron(III)
3. Overall charge of a formula must be neutral
4. Use a Greek prefix for # of waters of hydration

* non-metal + non-metal
 - \(\downarrow \) sharing of e-'
 - molecule or covalent compound
 - eg nitrogen oxides

NOMENCLATURE

1. Write 2nd element as if it were an anion
2. Use Greek prefixes to indicate number of each atom
 - (since it can vary!)
3. Leave off an initial "mono"
B. Compounds with More Than 2 Elements

If 1 element is a metal ⇒ ionic compound
If all elements are non-metallic ...

ionic compound
⇒ cation and/or anion is polyatomic
(more than 1 atom)

eg \(\text{NH}_4\text{CeO}_4 \text{ (s)} \)
\[\downarrow \text{H}_2\text{O} \]
\(\text{NH}_4^+(\text{aq}) + \text{CeO}_4^{2-} \text{ (aq)} \)

[H\(_2\)O solution can break ionic bonds by ions ...]

\(\text{H} \quad \text{':O':} \)
\[\text{H-N-H} \quad \text{':O-\text{Ce}-O':} \]
\[\text{H} \quad \text{':O':} \]

[but H\(_2\)O can't break covalent bonds within polyatomic ions!]

... in terms of chemistry and nomenclature,
... treat polyatomic ions as a unit.