Experiment 1: Gravimetric Determination of Iron as Fe₂O₃
(Adapted from Harris’s Quantitative Chemical Analysis)

Experimental Work in Olin-Rice 380 (and 378) on January 28, February 4 and 11
Notebook Due on February 22 by 4:00 p.m. (20% per day penalty if late)

INTRODUCTION
As we will discuss during the first week of classes, a sample containing various oxides of iron can be analyzed by dissolution, oxidation to a single oxidation state, precipitation of the hydrated hydroxide from basic solution, and finally ignition to produce Fe₂O₃:

\[
\text{Fe(II, III)O}_n\gamma\text{H}_2\text{O}_\text{(s) \ [rust]} \xrightarrow{\text{Hot HCl}_{\text{(aq)}}} \text{Fe}^{2+}_{\text{(aq)}} + \text{Fe}^{3+}_{\text{(aq)}} + \text{Cl}^-_{\text{(aq)}}\\
\xrightarrow{\text{Oxidation with hot HNO}}_{3\text{(aq)}} \xrightarrow{\text{isolation by filtration}} \text{FeO(OH)}\gamma\text{H}_2\text{O}_{\text{(gel)}} \\
\xrightarrow{\Delta, 900^\circ C} \text{Fe}_2\text{O}_3(\text{s \ [hematite, red-brown and steel grey]}}
\]

You will use this gravimetric technique to determine the weight percent of Fe in an iron ore sample. You will make at least three replicate measurements, which will allow you to determine both an average and a 95% confidence interval for your data.

SAFETY ISSUES AND LOGISTICS
• This lab INVOLVES CHEMICALS THAT POSE A SUBSTANTIAL RISK IF NOT HANDLED PROPERLY. Read and heed safety instructions here and in the experimental procedure
• Concentrated hydrochloric acid is highly corrosive, and gives off toxic, corrosive HCl(g) fumes, particularly when heated, as you will do in this lab, in a fume hood.
• Nitric acid (HNO₃) is a powerful acid and oxidizing agent, particularly when hot (as it will be in this experiment!)

WASTE
• The only chemical involved in this experiment that is not compatible with the sewer system by the time it needs to be disposed of is the silver used in week 2. Please carefully follow the instructions for its disposal. If you end up with a significant amount of un-neutralized acid or base that needs to be disposed of, please consult with your lab instructor for neutralization instructions.

EXPERIMENTAL PROCEDURE
This is a three week experiment. In the first week, you will heat and dry your crucibles while checking into your lab drawers. In the second week, you will complete the preparation of your crucibles and begin the preparation of your samples. In the third and final week, you will transfer your samples into your crucibles and burn away anything volatile, in preparation for
your final mass determinations, which are most efficiently done on a few minutes of your own
time, once the samples have cooled.

We will be spreading out between Olin-Rice 378 and 380 in order to have enough gas jets for all
the heating we are going to do. We'll also prop open the doors, because the lab will get hot!

Week 1 – Crucible Preparation and Lab Drawer Check-In

1. Extract the dessicator from your lab drawer and open it by sliding the lid off. Your lid
might be stuck from a year of non-use, so ask for help if it doesn't open easily. Wearing
gloves, remove the four crucibles inside and put them on a clean paper towel. If the
indicating Drierite™ inside the dessicator is pink or white rather than blue, ask your
instructor or TA for assistance in replacing it. If any of the crucibles appears to have
cracks that threaten their integrity, please ask for a consultation. (Superficial “hairline”
cracks in the alumina crucibles should not be a problem.)

2. Put the crucibles back into the dessicator, in such a manner that their positions identify
which one is which. (Most likely, numbers have already been written on the insert inside
the dessicator; if not, that is the best way to keep them straight. Don't write on the
 crucibles!)

3. Bring this dessicator into the weighing room, and put it next to an unoccupied analytical
balance. Weigh your four crucibles, noting whether each is made of porcelain (shiny
finish) or alumina (flat eggshell finish). This will give you a baseline value, to determine
if heating is removing any fingerprint oils and/or adsorbed water from the crucible. Also
write down the uncertainty in the balance reading—that is, how much is the reading
fluctuating? If you see no fluctuations, write down that the uncertainty is ±1 in the last
digit of the reading. Put the crucibles back in the dessicator and return to your bench.

4. Heat each crucible over a Meker-type (mongo-huge) Bunsen burner (Figure 1). (Each
group will have two gas jets, so you should be heating two of your crucibles at the same
time.) Increase the amount of air being mixed with the fuel until you see a dancing light
blue set of small flames right at the burner head surface. Adjust the height of the metal
ring so that the crucible is positioned just above that bright blue layer. (CAUTION: Do
the height adjustment before the ring gets too hot to handle!)

Figure 1. Positioning a crucible above a
burner. This setup will be demonstrated at the
start of the first week of this experiment. You
will be using a much bigger burner, with a
larger flame area...which works much better!
Putting the crucible on its side reduced the
thermal strain it has to endure.

5. Each crucible should be kept at orange heat for 5 minutes. You should heat until you see
all three of the ceramic supports on the clay triangle glowing orange, and then wait for 5
minutes past that point. (It's safest for your crucibles to heat them gradually, bringing the
flame in and out from under the crucible every few seconds when you first start heating.)
When time is up, turn OFF the Bunsen burner and let the entire setup sit for 30 minutes.
Everything is super-hot, and dangerous to handle, so don't touch anything. Just turn off the heat and let everything cool.

6. While waiting for your first two crucibles to cool, check into your lab drawer.

7. Once the first pair of crucibles has cooled for 30 minutes in the air, transfer this pair of crucibles into your desiccator. Avoid touching the crucibles with your bare fingers, as the weight of your fingerprints will register on the balance! Extract the other two crucibles, and place them on the metal rings over the burners.

8. Repeat the heating procedure with the remaining two crucibles, again allowing them to cool in the air for at least 30 minutes before placing them into the dessicator. While waiting, clean any glassware in your drawer that looks as though it might need it. Use water, but not soap!

9. Close the dessicator, making sure the lid of the desiccator seals tightly, and that your indicating Drierite crystals are blue, not pink or white. That's it for today!

Week 2 – Sample and Crucible Preparation (To use time efficiently, do Step 16 at the same time you are doing Steps 10-15)

10. Accurately weigh four samples from one of the unknown vials. Each sample should be around ~0.3 g. Put each sample in a clean, dry 400-mL beaker, and fit all four beakers onto a large hotplate in a fume hood. Wearing acid gloves, dissolve each sample in 20 mL of concentrated (~12 M) HCl. Heat gently with stirring. (Keep the rubber policemen out of the solution—we don't want bits of oxidized rubber in our samples!) More acid may be necessary to completely dissolve the samples. Make sure that you do not boil off all the water! It is easy to completely cook your samples, which means you will have to start over. In the unlikely event there are any insoluble impurities in your sample, you will need to filter through qualitative filter paper and wash the filter paper very well with distilled water. Ask your lab preceptor or instructor for help with this step, if you think it may be necessary.

11. Add 5 mL of 6 M HNO₃ to each sample, and boil for a few minutes to ensure that all iron is oxidized to Fe(III). Again, be careful not to boil away all the water!

12. Dilute the sample to 200 mL with distilled water and add 6 M ammonia with constant stirring until the solution is slightly basic (as indicated by a pH probe). Be sure to rinse the probe back into the beaker before removing it, so as to not lose any iron! Digest the precipitate (floculate it!) by boiling for 5 min and allow the precipitate to settle. (Alternatively, if the sample never comes to a boil, it is sufficient for the solution to have been heated vigorously for 25 min.)

13. Set up a filter rack and fit four long-necked funnels with coarse, ashless filter paper (Whatman 41, 110-mm diameter) into them. Wet the filter paper so that it sticks to the funnel. For each sample, stir and pour the solution into the funnel, trying to transfer as much suspended solid as possible with each pouring. The less solid you leave behind in the beaker the better, but don't spill, splash, or splatter any of the brown goo out of the funnel! Do not pour liquid higher than 1 cm from the top of the funnel. Transfer any remaining solid from the 400-mL beaker to the filter paper with the aid of a rubber
police and with hot 1% mass NH₄NO₃ (you will need to heat your own). (You will end up using up to ~500 mL of NH₄NO₃ in this part of the procedure!)

14. Wash three of your four precipitates with more hot 1% mass NH₄NO₃. (Leave one precipitate unwashed, so we can quantify the importance of this step in the procedure.) Test for Cl⁻ in the three precipitates by transferring a small volume of filtrate from each receiving beaker to a well (on a wellplate), and then adding a few drops of 0.1 M AgNO₃. If you see a milky white color, indicating the formation of AgCl(s), you still have a significant amount of Cl⁻ in your precipitate. Clean out each receiving beaker, and wash the precipitate with more hot 1% mass NH₄NO₃. Repeat until the white color of AgCl seen in the spot plate test becomes non-existent or faint.

15. Once all the filtrates emerges free of chloride ions, cover each of the four funnels with a ribbed watch glass. This will both protect each precipitate from dust and allow it to dry during the week.

16. [Don’t wait until you are completely done with Steps 10-15 to start this step!] Extract your crucibles from your dessicator and weigh them. If the mass of any of the crucibles has changed by more than 0.0010 g since the last weighing, you will need to bring that crucible through the heating and cooling process again. (Whether you need to do this depends on what was done with the crucible before it came into your possession, so don't feel you made a mistake if the mass changed a lot after the first heating. However, if done right, it only takes one heating to completely bake out a crucible! So the second time you heat a crucible should be the last.) Be certain that each crucible cools at least 30 minutes in the air before putting it into the dessicator. There's no point in re-weighing the crucibles yet again until they have thoroughly cooled. Wait at least one day before reweighing the crucibles. You can come into lab on your own, or wait until the start of week 3 to do it.

WASTE DISPOSAL FOR WEEK 2

- The well plate solutions, which contain Ag⁺, cannot go down the drain. Please just leave your well plate at your lab station, with the silver-containing solutions in it.
- Everything else from this lab can be poured down the drain.
Week 3 – Sample Ignition

17. Don’t be surprised at how much volume has been lost from your hydrated iron samples! Take a crucible out of your dessicator, and weigh it yet again. If for some reason it does not agree with the previous weighing to within ± 0.0010 g, please consult your instructor. Carefully lift the paper out of the funnel containing one of your precipitates, using a spatula to free it from the funnel. Fold it (as shown in Figure 2 below), and transfer it to the crucible. Fold up the filter papers as much as possible, but don't lose any of the solid from within! We are about to burn away the filter paper, and the tighter you can fold your samples, the easier it will be to remove the paper cleanly, but don't over-do it at the expense of your sample’s integrity! Do not let the paper stick out over the top edge of the crucible, or you risk losing some of your sample. Repeat this process for each of your precipitate samples.

Figure 2. Folding filter paper and placing it inside a crucible for ignition.
Continue folding paper so that the entire sample fits at the bottom of the crucible. However, be careful not to puncture the paper. (Note that your filter paper “package” will take up much more space inside the crucible than what the figure shows.)

18. Set up the crucibles over the burners as you did when heating them to constant mass. Do this without the burner lit – you want to heat things up quickly once you are actually ready.

19. Light the burner and put it under the crucible; in this case, don't bring it in and out from under the crucible, just put it underneath and leave it there, at full heat. With the flame so hot, the filter paper should quickly catch fire. This is actually desirable, as it minimizes smoke (which can carry away some iron) and also prevents the formation of graphite due to incomplete combustion of the filter paper. [Be sure air can readily get into the crucible, or the heat you are supplying will end up turning the carbon in the filter paper to graphite (which will stick to your analyte), instead of carbon dioxide.] Heat the crucibles to redness for 15 min, using the full heat of the burner, to ensure complete ignition of the iron oxide. Depending on the conditions under which the ignition takes place, the resulting hematite may be dark red, steel grey, or (most likely) a combination of these two. Again, to maximize efficiency, have two burners going simultaneously.

20. Cool each crucible at least 30 minutes in the air before transferring it to the desiccator. Once all four samples have been ignited and the crucibles cooled, you can seal up your
dessicator and call it a day. (The crucibles need to cool completely before their mass can
be accurately measured.)

21. You will need to come back sometime later (no sooner than the following day) to weigh
your crucibles containing the Fe₂O₃.

WASTE DISPOSAL FOR WEEK 3
• All iron waste can go into the trash.

DATA ANALYSIS:

1. In your notebook, write out in detail the calculation of the %_{\text{mass}} Fe in one of your
samples, propagating error using the methods described in Harris Chapter 3. First
calculate the mass of the empty crucible. For most lab groups, the uncertainty in this
mass will be the uncertainty in the analytical balance used to obtain it (which you wrote
down in your notebook, right?) (However, if you had three randomly-varying weights
for the crucible, the uncertainty will be the standard deviation in those three values.)
Then calculate the mass of Fe₂O₃ obtained in that crucible, along with the uncertainty in
that value. Finally, calculate the %_{\text{mass}} Fe for that sample, based on the mass of the
sample and the formula masses of the species involved, each with its associated
uncertainty. (Use the periodic table in Harris as your source for atomic masses and their
uncertainties.) This calculation tells you the uncertainty (reported as a standard
deviation) inherent in each of your individual results.

2. Calculate the weight percent of iron in each sample. (I encourage you to use Excel to do
this.) Perform a Q-test if you suspect that any of the four weight percent values differs in
a statistically significant way from the other three values. In your notebook, discuss if
the sample you did not wash with lots of hot 1% NH₄NO₃ has a significantly different
weight percent Fe.

3. Calculate the average, the standard deviation, and the 95% confidence interval for your
set of four (or three) weight percent values. You should use the last weight obtained for
each crucible in your calculations. Be sure to write (or display in your Excel spreadsheet)
the average and 95% confidence interval to the same number of decimal places. Compare the standard deviation obtained here with the standard deviation you calculated
in Step 1 of the data analysis.

4. Perform a Case 1 t-test, comparing your experimental average to the accepted value I will
e-mail you after the February 11 lab session.

5. Discuss the possible sources of both systematic and random error in the experiment, and
judge what the dominant sources may be. Be sure to identify the sign of each systematic
error. Note that even if your Case 1 t-test does not indicate the presence of systematic
error, you should still discuss what the likely sources of systematic error would be.

6. Remember to end with a brief Conclusion in which you summarize what you did and
indicate if the Objective was achieved. (If not, explain briefly why not.) Also propose at
least one way the lab could be improved.