Experiment 1: Gravimetric Determination of Iron as Fe$_2$O$_3$
(Adapted from Harris’s *Quantitative Chemical Analysis*)

Experimental Work in Olin-Rice 380 (and 378) on January 26 and February 2, 3, and 9
Notebook Due on February 20 by 4:00 p.m. (20% per day penalty if late)

INTRODUCTION

As we will discuss during the first week of classes, a sample containing various oxides of iron can be analyzed by dissolution, oxidation to a single oxidation state, precipitation of the hydrated hydroxide from basic solution, and finally ignition to produce Fe$_2$O$_3$:

\[
\text{Fe(II, III)O}_n\text{yH}_2\text{O}_x(s) \xrightarrow{\text{rust}} \text{Fe}^{2+}_{(aq)} + \text{Fe}^{3+}_{(aq)} + \text{Cl}^-_{(aq)}
\]

\[
\text{Fe}^{2+}_{(aq)} \xrightarrow{\text{Oxidation with hot } \text{HNO}_3_{(aq)}} \text{Fe}^{3+}_{(aq)}
\]

\[
\text{Fe}^{3+}_{(aq)} + 3 \text{OH}^-_{(aq) [from NH}_3{_{(aq)}}] + (x-1) \text{H}_2\text{O}_{(l)} \xrightarrow{\text{isolation by filtration}} \text{FeO(OH)}_{x}\text{H}_2\text{O}_{(gel)}
\]

\[
\Delta, 900^\circ \text{C} \rightarrow \text{Fe}_2\text{O}_3(s) \text{ [hematite, red-brown and steel grey]}
\]

You will use this gravimetric technique to determine the weight percent of Fe in an iron ore sample. You will make four replicate measurements, which will allow you to determine both an average and a 95% confidence interval for your data.

SAFETY ISSUES AND LOGISTICS

- **This lab INVOLVES CHEMICALS THAT POSE A SUBSTANTIAL RISK IF NOT HANDLED PROPERLY.** Read and heed safety instructions here and in the experimental procedure.
- **Concentrated hydrochloric acid (HCl) is highly corrosive and gives off toxic, corrosive HCl(g) fumes, particularly when heated, as you will do in this lab in a fume hood.**
- **Nitric acid (HNO$_3$) is a powerful acid and oxidizing agent, particularly when hot (as it will be in this experiment!). It too will evolve nasty fumes when heated, so do so only in a fume hood.**

WASTE

- **Everything generated in this experiment is compatible with the sewer system (by the time it is ready to be discarded) and therefore can go down the drain. If you end up with a significant amount of un-neutralized acid or base that needs to be disposed of, please consult with your lab instructor for neutralization instructions.**

EXPERIMENTAL PROCEDURE

This is a three week experiment. In the first week, you will heat and dry your crucibles while checking into your lab drawers. In the second week, you will complete the preparation of your crucibles and begin the preparation of your samples. In the third and final week, you will transfer your samples into your crucibles and burn away anything volatile, in preparation for your final mass determinations, which are most efficiently done on a few minutes of your own time, once the samples have cooled.

We will be spreading out between Olin-Rice 378 and 380 in order to have enough gas jets for all the heating we are going to do. We'll also prop open the doors, because the lab will get hot!
Week 1 – Crucible Preparation and Lab Drawer Check-In

1. A desiccator will be waiting for you at your lab station. Open it by carefully sliding the lid off, then put the lid down with the flat (sealing) face UP. Wearing gloves, remove the four crucibles from inside and put them on a clean paper towel. If the indicating Drierite™ inside the desiccator is pink or white rather than blue, ask your instructor or TA for assistance in replacing it. If any of the crucibles appears to have cracks that threaten their integrity, please ask for a consultation. (Superficial “hairline” cracks in the alumina crucibles should not be a problem.)

2. Put the crucibles back into the desiccator in such a manner that their positions identify which one is which. (Most likely, numbers have already been written on the insert inside the desiccator; if not, that is the best way to keep them straight. Don't write on the crucibles!)

3. Bring this desiccator into the weighing room, and put it next to an unoccupied analytical balance. Weigh your four crucibles, noting whether each is made of porcelain (shiny finish) or alumina (flat eggshell finish). This will give you a baseline value to determine if heating is removing any fingerprint oils and/or adsorbed water from the crucible. Also write down the uncertainty in the balance reading—that is, how much is the reading fluctuating? If you see no fluctuations, write down that the uncertainty is ±1 in the last digit of the reading. Put the crucibles back in the desiccator and return to your bench.

4. Heat each crucible over a Meker-type (mongo-huge) Bunsen burner (Figure 1). (Each group will have two gas jets, so you should be heating two of your crucibles at the same time.) Increase the amount of air being mixed with the fuel until you see a dancing light blue set of small flames right at the burner head surface. Adjust the height of the metal ring so that the crucible is positioned just above that bright blue layer. (CAUTION: Adjust it before the ring gets too hot to handle!)

Figure 1. Positioning a crucible above a burner. This setup will be demonstrated at the start of the first week of this experiment. You will be using a much bigger burner with a larger flame area...which works much better! Putting the crucible on its side reduces the thermal strain it has to endure.

5. Each crucible should be kept at orange heat for 5 minutes. This means that you should heat until you see all three of the ceramic supports on the clay triangle glowing orange, and then wait for 5 minutes past that point. (It's safest for your crucibles to heat them gradually, bringing the flame in and out from under the crucible every few seconds when you first start heating.) When time is up, turn OFF the Bunsen burner and let the entire setup sit for 30 minutes. **Everything is super-hot and dangerous to handle, so don't touch anything. Just turn off the heat and let everything cool.**

6. While waiting for your first two crucibles to cool, check into your lab drawer.

7. Once the first pair of crucibles has cooled for 30 minutes in the air, transfer this pair of crucibles into your desiccator. Avoid touching the crucibles with your bare fingers, as the weight of your fingerprints will register on the balance! Extract the other two crucibles and place them on the metal rings over the burners.

8. Repeat the heating procedure with the remaining two crucibles, again allowing them to cool in the air for at least 30 minutes before placing them into the desiccator. While waiting, clean any glassware in your drawer that looks as though it might need it. Use water, but not soap!

9. Close the desiccator, making sure the lid of the desiccator seals tightly, and that your indicating Drierite crystals are blue, not pink. That's it for today!
Week 2 – Sample and Crucible Preparation

(TO USE TIME EFFICIENTLY, DO STEP 15 AT THE SAME TIME YOU ARE DOING STEPS 10-14)

10. Accurately weigh four samples from one of the unknown vials. Each sample should be around ~0.3 g. Put each sample in a clean, dry 400-mL beaker, and fit all four beakers onto a large hotplate in a fume hood. Wearing acid gloves, dissolve each sample in 20 mL of concentrated (~12 M) HCl. Heat gently with stirring. (Keep the rubber policemen out of the solution—we don't want bits of oxidized rubber in our samples!) More acid may be necessary to completely dissolve the samples. Make sure that you do not boil off all the water! It is easy to completely cook your samples, which means you will have to start over...so don't do that! In the unlikely event there are any insoluble impurities in your sample, you will need to filter through qualitative filter paper and wash the filter paper very well with distilled water. Ask your lab preceptor or instructor for help with this step, if you think it may be necessary.

11. Add 5 mL of 6 M HNO₃ to each sample, and boil for a few minutes in the fume hood to ensure that all iron is oxidized to Fe(III). Again, be careful not to boil away all the water!

12. Dilute the sample to 200 mL with distilled water and slowly add 6 M ammonia, with constant stirring, until the solution is slightly basic (as indicated by a pH probe). Be sure to rinse the probe back into the beaker before removing it, so as to not lose any iron! Digest the precipitate (flocculate it!) by boiling for 5 min, then allow the precipitate to settle. (Alternately, if the sample never comes to a boil, it is sufficient for the solution to have been heated vigorously for 25 min.)

13. Set up a filter rack and fit four long-necked funnels with coarse, ashless filter paper (Whatman 41, 110-mm diameter) into them. Wet the filter paper so that it sticks to the funnel. For each sample, stir and pour the solution into the funnel, trying to transfer as much suspended solid as possible with each pouring. The less solid you leave behind in the beaker the better, but don't spill, splash, or splatter any of the brown goo out of the funnel! Do not pour liquid higher than 1 cm from the top of the funnel. Transfer any remaining solid from the 400-mL beaker to the filter paper with the aid of a rubber policeman and with hot 1% mass NH₄NO₃ (you will need to heat your own).

14. Cover each of the four funnels with a ribbed watch glass with the ribs down. This will both protect each precipitate from dust and allow the precipitate to dry overnight.

15. *[Don’t wait until you are completely done with Steps 10-14 to start this step!]* Extract your crucibles from your desiccator and weigh them. If the mass of any of the crucibles has changed by more than 0.0010 g since the last weighing, you will need to bring that crucible through the heating and cooling process again. (Whether you need to do this depends on what was done with the crucible before it came into your possession, so don't feel you made a mistake if the mass changed a lot after the first heating. However, if done right, it only takes one heating to completely bake out a crucible! So the second time you heat a crucible should be the last.) Be certain that each crucible cools at least 30 minutes in the air before putting it into the desiccator. There's no point in re-weighing the crucibles yet again until they have thoroughly cooled. Wait at least one day before reweighing the crucibles. You can come into lab on your own, or wait until the start of week 3 to do it.

16. **Come back the next day (Friday, February 3) to do this step:** Carefully lift the filter paper out of each of your four funnels, using a spatula to free it from the funnel. Fold it as shown in Figure 2 below. Each sample should be small enough to fit into a crucible, but don't fold it so tightly that it starts to fall apart! Return each sample to a funnel for now, and cover each funnel again with a ribbed watch glass (again, put the ribs down).
Figure 2. The recommended method for folding a filter paper. Fold the sample tightly enough so that it will fit entirely inside a crucible, but be careful not to puncture the paper.

1. Flatten paper
2. Fold in edges
3. Fold over top

WASTE DISPOSAL FOR WEEK 2

- Everything from this lab can be poured down the drain.
Week 3 – Sample Ignition

17. Take a crucible out of your desiccator, and weigh it yet again. If for some reason it does not agree with the previous weighing to within ± 0.0010 g, please consult your instructor. Carefully transfer each of your four samples to a different crucible. Do not let the paper stick out over the top edge of the crucible, or you risk losing some of your sample. Set up the crucibles over the burners as you did when heating them to constant mass. Do this without the burner lit – you want to heat things up quickly once you are actually ready.

18. Light the burner and put it under the crucible; in this case, don't bring it in and out from under the crucible; just put it underneath and leave it there, at full heat. With the flame so hot, and ready access to oxygen, the filter paper should quickly catch fire. This is actually desirable, as it minimizes smoke (which can carry away some iron) and also prevents the formation of graphite (which will stick to your analyte, in contrast to the desired carbon dioxide) due to incomplete combustion of the filter paper. Heat the crucibles to redness for 15 min, using the full heat of the burner, to ensure complete ignition of the iron oxide. Depending on the conditions under which the ignition takes place, the resulting hematite may be dark red, steel grey, or (most likely) a combination of these two. Again, to maximize efficiency, have two burners going simultaneously.

19. Cool each crucible at least 30 minutes in the air before transferring it to the desiccator. Once all four samples have been ignited and the crucibles cooled, you can seal up your desiccator and call it a day. (The crucibles need to cool completely before their mass can be accurately measured.)

20. You will need to come back sometime later (no sooner than the following day) to carefully weigh your crucibles containing the Fe₂O₃.

WASTE DISPOSAL FOR WEEK 3

- All iron waste can go into the trash.
DATA ANALYSIS:

1. In your notebook, write out in detail the calculation of the \(\%_{mass}\) Fe in one of your samples, propagating error using the methods described in Harris Chapter 3. (However, you don't have to propagate relative error as percentages; Harris does this, but we don't think it's always the best approach.) Start with the mass of the empty crucible. For most lab groups, this will be the final weight measured for that crucible, and the uncertainty in this mass will be the uncertainty in the analytical balance used to obtain it (which you wrote down in your notebook, right?). (However, if you had three randomly-varying weights for the crucible, the mass of the crucible should be taken to be the average of the three weights, and the uncertainty will be the standard deviation in the three weights.) Then calculate the mass of Fe\(_2\)O\(_3\) obtained in that crucible, along with the uncertainty in that value. Finally, calculate the \(\%_{mass}\) Fe for that sample, based on the mass of the sample and the formula masses of the species involved, each with its associated uncertainty. (Use the periodic table in Harris as your source for atomic masses and their uncertainties.) This calculation tells you the uncertainty (reported as a standard deviation) inherent in each of your individual results.

2. Calculate the weight percent of iron in each sample. (I encourage you to use Excel to do this.) Perform a \(Q\)-test if you suspect that one of the four weight percent values differs in a statistically significant way from the other three values. If you end up rejecting a value, discuss what happened (or could have happened) experimentally to create this outlying value.

3. Calculate the average, the standard deviation, and the 95% confidence interval for your set of four (or three) weight percent values. Be sure to write (or display in your Excel spreadsheet) the average and 95% confidence interval to the same number of decimal places. Compare the standard deviation obtained here with the standard deviation you calculated in Step 1 of the data analysis.

4. Perform a Case 1 \(t\)-test that compares your experimental average to the accepted value I will e-mail you after the February 9 lab session.

5. Discuss the possible sources of both systematic and random error in the experiment, and judge what the dominant sources may be. Be sure to identify the sign of each systematic error. Note that even if your Case 1 \(t\)-test does not indicate the presence of systematic error at the 95% confidence level, you should still discuss what the likely sources of systematic error would be.

6. Remember to end with a brief Conclusion in which you summarize what you did and indicate if the Objective was achieved. (If not, explain briefly why not.) Also, propose at least one way the lab could be improved.

Remember that your lab notebook is due on (or before) **February 20 at 4:00 p.m.**

Please put it in Prof. Kuwata's mailbox in Olin-Rice 320, or slide it under the door of his office (Olin-Rice 318).